Suppr超能文献

个性化胶质母细胞瘤放疗设计:数学肿瘤模型、多模态扫描和贝叶斯推断的整合。

Personalized Radiotherapy Design for Glioblastoma: Integrating Mathematical Tumor Models, Multimodal Scans, and Bayesian Inference.

出版信息

IEEE Trans Med Imaging. 2019 Aug;38(8):1875-1884. doi: 10.1109/TMI.2019.2902044. Epub 2019 Feb 27.

Abstract

Glioblastoma (GBM) is a highly invasive brain tumor, whose cells infiltrate surrounding normal brain tissue beyond the lesion outlines visible in the current medical scans. These infiltrative cells are treated mainly by radiotherapy. Existing radiotherapy plans for brain tumors derive from population studies and scarcely account for patient-specific conditions. Here, we provide a Bayesian machine learning framework for the rational design of improved, personalized radiotherapy plans using mathematical modeling and patient multimodal medical scans. Our method, for the first time, integrates complementary information from high-resolution MRI scans and highly specific FET-PET metabolic maps to infer tumor cell density in GBM patients. The Bayesian framework quantifies imaging and modeling uncertainties and predicts patient-specific tumor cell density with credible intervals. The proposed methodology relies only on data acquired at a single time point and, thus, is applicable to standard clinical settings. An initial clinical population study shows that the radiotherapy plans generated from the inferred tumor cell infiltration maps spare more healthy tissue thereby reducing radiation toxicity while yielding comparable accuracy with standard radiotherapy protocols. Moreover, the inferred regions of high tumor cell densities coincide with the tumor radioresistant areas, providing guidance for personalized dose-escalation. The proposed integration of multimodal scans and mathematical modeling provides a robust, non-invasive tool to assist personalized radiotherapy design.

摘要

胶质母细胞瘤(GBM)是一种高度侵袭性的脑肿瘤,其细胞浸润到当前医学扫描中可见病变轮廓之外的周围正常脑组织中。这些浸润性细胞主要通过放疗进行治疗。现有的脑肿瘤放疗计划源自人群研究,几乎没有考虑到患者的具体情况。在这里,我们提供了一个贝叶斯机器学习框架,用于使用数学建模和患者多模态医学扫描来合理设计改进的个性化放疗计划。我们的方法首次将来自高分辨率 MRI 扫描和高度特异性 FET-PET 代谢图的补充信息整合在一起,以推断 GBM 患者的肿瘤细胞密度。贝叶斯框架量化了成像和建模不确定性,并预测了具有可信区间的患者特异性肿瘤细胞密度。所提出的方法仅依赖于在单个时间点获得的数据,因此适用于标准临床环境。初步的临床人群研究表明,从推断的肿瘤细胞浸润图生成的放疗计划可以保留更多的健康组织,从而降低放射毒性,同时与标准放疗方案具有可比的准确性。此外,高肿瘤细胞密度的推断区域与肿瘤耐辐射区域重合,为个性化剂量递增提供了指导。多模态扫描和数学建模的这种整合提供了一种稳健、非侵入性的工具,用于辅助个性化放疗设计。

相似文献

1
Personalized Radiotherapy Design for Glioblastoma: Integrating Mathematical Tumor Models, Multimodal Scans, and Bayesian Inference.
IEEE Trans Med Imaging. 2019 Aug;38(8):1875-1884. doi: 10.1109/TMI.2019.2902044. Epub 2019 Feb 27.
3
Deep learning derived tumor infiltration maps for personalized target definition in Glioblastoma radiotherapy.
Radiother Oncol. 2019 Sep;138:166-172. doi: 10.1016/j.radonc.2019.06.031. Epub 2019 Jul 11.
4
Personalized Radiotherapy Planning Based on a Computational Tumor Growth Model.
IEEE Trans Med Imaging. 2017 Mar;36(3):815-825. doi: 10.1109/TMI.2016.2626443. Epub 2016 Nov 8.
5
A biologically adapted dose-escalation approach, demonstrated for 18F-FET-PET in brain tumors.
Strahlenther Onkol. 2008 Oct;184(10):536-42. doi: 10.1007/s00066-008-1883-6. Epub 2008 Oct 1.
8
Analysis of FET-PET imaging for target volume definition in patients with gliomas treated with conformal radiotherapy.
Radiother Oncol. 2013 Dec;109(3):487-92. doi: 10.1016/j.radonc.2013.06.043. Epub 2013 Aug 13.
10
Integrated boost IMRT with FET-PET-adapted local dose escalation in glioblastomas. Results of a prospective phase II study.
Strahlenther Onkol. 2012 Apr;188(4):334-9. doi: 10.1007/s00066-011-0060-5. Epub 2012 Feb 22.

引用本文的文献

1
Multimodal Integration in Health Care: Development With Applications in Disease Management.
J Med Internet Res. 2025 Aug 21;27:e76557. doi: 10.2196/76557.
2
Inverse Problem Regularization for 3D Multi-Species Tumor Growth Models.
Int J Numer Method Biomed Eng. 2025 Jul;41(7):e70057. doi: 10.1002/cnm.70057.
8
Mathematical modeling in radiotherapy for cancer: a comprehensive narrative review.
Radiat Oncol. 2025 Apr 4;20(1):49. doi: 10.1186/s13014-025-02626-7.
9
Identifiability and model selection frameworks for models of high-grade glioma response to chemoradiation.
Philos Trans A Math Phys Eng Sci. 2025 Apr 2;383(2293):20240212. doi: 10.1098/rsta.2024.0212.

本文引用的文献

2
Computational Approaches and Analysis for a Spatio-Structural-Temporal Invasive Carcinoma Model.
Bull Math Biol. 2018 Apr;80(4):701-737. doi: 10.1007/s11538-018-0396-4. Epub 2018 Mar 2.
3
The biology and mathematical modelling of glioma invasion: a review.
J R Soc Interface. 2017 Nov;14(136). doi: 10.1098/rsif.2017.0490.
5
A Patient-Specific Anisotropic Diffusion Model for Brain Tumour Spread.
Bull Math Biol. 2018 May;80(5):1259-1291. doi: 10.1007/s11538-017-0271-8. Epub 2017 May 10.
6
Modelling and Bayesian adaptive prediction of individual patients' tumour volume change during radiotherapy.
Phys Med Biol. 2016 Mar 7;61(5):2145-61. doi: 10.1088/0031-9155/61/5/2145.
7
Patient-specific mathematical neuro-oncology: using a simple proliferation and invasion tumor model to inform clinical practice.
Bull Math Biol. 2015 May;77(5):846-56. doi: 10.1007/s11538-015-0067-7. Epub 2015 Mar 21.
9
Radiotherapy planning for glioblastoma based on a tumor growth model: improving target volume delineation.
Phys Med Biol. 2014 Feb 7;59(3):747-70. doi: 10.1088/0031-9155/59/3/747. Epub 2014 Jan 20.
10
Analysis of FET-PET imaging for target volume definition in patients with gliomas treated with conformal radiotherapy.
Radiother Oncol. 2013 Dec;109(3):487-92. doi: 10.1016/j.radonc.2013.06.043. Epub 2013 Aug 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验