Lin Wei-Chun, Lo Wei-Chun, Li Jun-Xian, Huang Pei-Chen, Wang Man-Ying
Department of Photonics, National Sun Yat-Sen University, No. 70, Lianhai Rd., Gushan Dist., Kaohsiung City 804, Taiwan (ROC).
Department of Materials Science and Engineering, Feng Chia University, No. 100, Wenhua Rd., Xitun Dist., Taichung City 407802, Taiwan (ROC).
ACS Omega. 2021 Nov 29;6(50):34606-34614. doi: 10.1021/acsomega.1c05002. eCollection 2021 Dec 21.
Organometal halide perovskites are highly promising materials for photovoltaic applications due to the rapid growth of power conversion efficiency in recent years. However, thermal stability is still a major hurdle for perovskite solar cells toward commercialization. Herein, we first explore the slow thermal response of the CHNHPbI perovskite crystal investigated via Auger electron spectroscopy (AES). AES image mapping directly observes the evolution of morphology and elemental distribution over time. The AES small spot analysis demonstrates the precise initial degradation position of perovskite with both information regarding physical changes in crystals and chemical changes in elemental bonding at the nanometer scale. X-ray photoelectron spectroscopy (XPS) was used to confirm the surface chemical bonding and composition of the perovskite crystals. This work provides the first insights into the physical and chemical changes of perovskites investigated by AES upon long-term exposure to heat under ambient conditions.
近年来,由于功率转换效率的快速增长,有机金属卤化物钙钛矿是极具前景的光伏应用材料。然而,热稳定性仍然是钙钛矿太阳能电池商业化的主要障碍。在此,我们首先通过俄歇电子能谱(AES)研究了CHNHPbI钙钛矿晶体的缓慢热响应。AES图像映射直接观察了形态和元素分布随时间的演变。AES小斑点分析证明了钙钛矿精确的初始降解位置,同时提供了晶体物理变化和纳米尺度元素键合化学变化的信息。利用X射线光电子能谱(XPS)确认了钙钛矿晶体的表面化学键合和组成。这项工作首次揭示了在环境条件下长期受热时,通过AES研究的钙钛矿的物理和化学变化。