Rosenbaum Andrew N, Antaki James F, Behfar Atta, Villavicencio Mauricio A, Stulak John, Kushwaha Sudhir S
Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.
William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota, USA.
Compr Physiol. 2021 Dec 29;12(1):2731-2767. doi: 10.1002/cphy.c210016.
The expanding use of continuous-flow left ventricular assist devices (CF-LVADs) for end-stage heart failure warrants familiarity with the physiologic interaction of the device with the native circulation. Contemporary devices utilize predominantly centrifugal flow and, to a lesser extent, axial flow rotors that vary with respect to their intrinsic flow characteristics. Flow can be manipulated with adjustments to preload and afterload as in the native heart, and ascertainment of the predicted effects is provided by differential pressure-flow (H-Q) curves or loops. Valvular heart disease, especially aortic regurgitation, may significantly affect adequacy of mechanical support. In contrast, atrioventricular and ventriculoventricular timing is of less certain significance. Although beneficial effects of device therapy are typically seen due to enhanced distal perfusion, unloading of the left ventricle and atrium, and amelioration of secondary pulmonary hypertension, negative effects of CF-LVAD therapy on right ventricular filling and function, through right-sided loading and septal interaction, can make optimization challenging. Additionally, a lack of pulsatile energy provided by CF-LVAD therapy has physiologic consequences for end-organ function and may be responsible for a series of adverse effects. Rheological effects of intravascular pumps, especially shear stress exposure, result in platelet activation and hemolysis, which may result in both thrombotic and hemorrhagic consequences. Development of novel solutions for untoward device-circulatory interactions will facilitate hemodynamic support while mitigating adverse events. © 2021 American Physiological Society. Compr Physiol 12:1-37, 2021.
连续流左心室辅助装置(CF-LVADs)在终末期心力衰竭中的应用不断扩大,这就需要熟悉该装置与自身循环之间的生理相互作用。当代装置主要采用离心式血流,在较小程度上采用轴流式转子,它们的固有血流特性各不相同。与自身心脏一样,可通过调整前负荷和后负荷来控制血流,通过压差-血流(H-Q)曲线或环来确定预期效果。瓣膜性心脏病,尤其是主动脉瓣反流,可能会显著影响机械支持的充分性。相比之下,房室和心室间的同步性意义尚不确定。虽然通常可观察到装置治疗的有益效果,如增强远端灌注、减轻左心室和左心房负荷以及改善继发性肺动脉高压,但CF-LVAD治疗通过右侧负荷和室间隔相互作用对右心室充盈和功能产生的负面影响,可能会使优化治疗具有挑战性。此外,CF-LVAD治疗缺乏搏动能量会对终末器官功能产生生理影响,并可能导致一系列不良反应。血管内泵的流变学效应,尤其是剪切应力暴露,会导致血小板活化和溶血,这可能会导致血栓形成和出血后果。开发针对不良装置-循环相互作用的新解决方案将有助于实现血流动力学支持,同时减轻不良事件。© 2021美国生理学会。综合生理学12:1-37,2021。