Palanisamy Manikandan, Perumal Ramakrishnan, Pol Vilas G
Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States.
Department of Mechanical Engineering, SRM TRP Engineering College, Tiruchirappalli, Tamilnadu 621105, India.
ACS Appl Mater Interfaces. 2022 Jan 12;14(1):684-697. doi: 10.1021/acsami.1c17953. Epub 2021 Dec 29.
Advanced wave-shape non-graphitizable carbon sheets are derived, comprising mesoporous weaved turbostratic micropore enabled stable Na ion storage. The non-graphitizable amorphous characteristics are determined from the obtained two broad diffraction peaks at 22.7° and 43.8°. The observed D-band at 1325 cm and G-band at 1586 cm confirm the disordered graphitic structure, attributed to the measured specific surface area of 54 m g. Mesoporous weaved wave-shape carbon sheet architecture is confirmed by surface morphological studies, showing lattice fringes of disordered graphitic structures and dispersed ring patterns for the non-crystalline characteristics. The predominant stable redox peak at 0.014 V/0.185 V and the broader rectangular shape between 0.9 and 0.15 V depict the adsorption-micropore filling mechanism. The mesoporous hard carbon sheet delivers discharge-charge capacities of 450/311 mAh g (1st cycle) and 263/267 mAh g (250th cycle) at 25 mA g, exhibiting a superior anode for sodium-ion batteries. Besides, in situ multimode calorimetry results disclose that the micropore filling Na ion storage shows a higher released total heat energy of 721 J g than the adsorption (471 J g). Ultimately, differential scanning calorimetry analysis of micropore filling Na ion storage (discharged state at 0.01 V) has revealed a predominant exothermic peak at 156 °C with the highest released total heat energy of 2183 J g compared to adsorption (553 J g) and deintercalation (85 J g), indicating that micropore filling status is more unsafe than the adsorption and deintercalation for SIBs.
制备出了先进的波形非石墨化碳片,其包含中孔编织的乱层微孔结构,能够实现稳定的钠离子存储。根据在22.7°和43.8°处获得的两个宽衍射峰确定了非石墨化的非晶特性。在1325 cm处观察到的D带和在1586 cm处观察到的G带证实了无序的石墨结构,这归因于测得的54 m²/g的比表面积。通过表面形态学研究证实了中孔编织波形碳片结构,显示出无序石墨结构的晶格条纹和非晶特性的弥散环图案。在0.014 V/0.185 V处的主要稳定氧化还原峰以及在0.9至0.15 V之间较宽的矩形形状描述了吸附-微孔填充机制。中孔硬碳片在25 mA/g的电流密度下的放电/充电容量分别为450/311 mAh/g(第1次循环)和263/267 mAh/g(第250次循环),是钠离子电池性能优异的负极材料。此外,原位多模量热法结果表明,微孔填充钠离子存储显示出比吸附(471 J/g)更高的总释放热能,为721 J/g。最终, 对微孔填充钠离子存储(0.01 V下的放电状态)的差示扫描量热分析显示,在156 °C处有一个主要的放热峰,与吸附(553 J/g)和脱嵌(85 J/g)相比,其总释放热能最高,为2183 J/g,这表明对于钠离子电池来说,微孔填充状态比吸附和脱嵌状态更不安全。