Palanisamy Manikandan, Reddy Boddu Venkata Rami, Shirage Parasharam M, Pol Vilas G
Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States.
Discipline of Metallurgy Engineering and Material Science, Indian Institute of Technology, Indore 453552, India.
ACS Appl Mater Interfaces. 2021 Jul 14;13(27):31594-31604. doi: 10.1021/acsami.1c04482. Epub 2021 Jun 29.
A sol-gel process followed by heat treatment derived a layered P2-type NaCoO cathode, which depicted unit cell parameters values of = 2.8389 Å, = 10.9899 Å, and = 76.71 Å in powder X-ray diffraction pattern. The synthesized cathode exhibited hexagonal, 2D platelets with an ∼300 nm thickness. During the anodic and cathodic sweeps, the cyclic voltammograms revealed multiple redox peaks with the same current densities, shapes, and peak positions, associated with the highly reversible phase transition mechanism of the layered P2-type NaCoO cathode. The sodium cells yielded the capacities of 93/92 mAh g at 0.5 C and 87/87 mAh g at 1 C for the 50th charge-discharge cycles. The multimode calorimetry (MMC) studies of sodium cells demonstrated a thermal explosion event, which occurred by sodium melting, short-circuit, electrode decomposition reaction, gas generation, exothermic reaction, released heat energy ,and cell gasket melting. Ultimately, the calculated released total heat energies of ∼550/740 J g for MMC studies and ∼312/594 J g for DSC analyses (charge state at 4 V and discharge state at 2 V) show that the discharged state of sodiated layered P2-type NaCoO cathode material is more unsafe than the charge state. Furthermore, the differential scanning calorimetry (DSC) spectrum of a discharge state at 2 V of layered P2-type NaCoO revealed a decreased onset temperature (DOT) at 141 °C with two pronounced exothermic peaks at 197 and 266 °C with a released higher total heat energy of 594 J g than the charge state heat energy at 312 J g, attributed to the higher charge onset temperature (COT) at 191 °C. Thus, the observed higher heat energy and decreased onset temperature for the discharge state at 2 V is associated with the higher Na ion in the discharge state of the layered P2-type NaCoO cathode than that of the pristine cathode, showcasing that the layered P2-type NaCoO cathode is unsafe at the discharged condition for sodium-ion batteries.
通过溶胶 - 凝胶法并经热处理得到了层状P2型NaCoO正极,其在粉末X射线衍射图谱中的晶胞参数值为a = 2.8389 Å、b = 10.9899 Å和c = 76.71 Å。合成的正极呈现出厚度约为300 nm的六方二维片状结构。在阳极和阴极扫描过程中,循环伏安图显示出多个具有相同电流密度、形状和峰位置的氧化还原峰,这与层状P2型NaCoO正极高度可逆的相变机制有关。在第50次充放电循环中,钠电池在0.5 C时的容量为93/92 mAh g,在1 C时的容量为87/87 mAh g。钠电池的多模式量热法(MMC)研究表明发生了热爆炸事件,该事件是由钠熔化、短路、电极分解反应、气体生成、放热反应、释放热能以及电池垫圈熔化引起的。最终,MMC研究计算得出的释放总热能约为550/740 J g,差示扫描量热法(DSC)分析(充电状态为4 V,放电状态为2 V)计算得出的释放总热能约为312/594 J g,这表明钠化层状P2型NaCoO正极材料的放电状态比充电状态更不安全。此外,层状P2型NaCoO在2 V放电状态下的差示扫描量热法(DSC)谱图显示起始温度(DOT)降至141 °C,在197和266 °C处有两个明显的放热峰,释放的总热能为594 J g,高于充电状态下的热能312 J g,这归因于充电起始温度(COT)为191 °C。因此,观察到的2 V放电状态下较高的热能和降低的起始温度与层状P2型NaCoO正极放电状态下比原始正极更高的Na离子含量有关,这表明层状P2型NaCoO正极在钠离子电池的放电条件下是不安全的。