IEEE Trans Vis Comput Graph. 2023 Apr;29(4):2005-2019. doi: 10.1109/TVCG.2021.3136214. Epub 2023 Feb 28.
This article proposes HaptoMapping, a projection-based visuo-haptic augmented reality (VHAR) system, that can render visual and haptic content independently and present consistent visuo-haptic sensations on physical surfaces. HaptoMapping controls wearable haptic displays by embedded control signals that are imperceptible to the user in projected images using a pixel-level visible light communication technique. The prototype system is comprised of a high-speed projector and three types of haptic devices-finger worn, stylus, and arm mounted. The finger-worn and stylus devices present vibrotactile sensations to a user's fingertips. The arm-mounted device presents stroking sensations on a user's forearm using arrayed actuators with a synchronized hand projection mapping. We identified that the developed system's maximum latency of haptic from visual sensations was 93.4 ms. We conducted user studies on the latency perception of our VHAR system. The results revealed that the developed haptic devices can present haptic sensations without user-perceivable latencies, and the visual-haptic latency tolerance of our VHAR system was 100, 159, 500 ms for the finger-worn, stylus, and arm-mounted devices, respectively. Another user study with the arm-mounted device discovered that the visuo-haptic stroking system maintained both continuity and pleasantness when the spacing between each substrate was relatively sparse, such as 20 mm, and significantly improved both the continuity and pleasantness at 80 and 150 mm/s when compared to the haptic only stroking system. Lastly, we introduced four potential applications in daily scenes. Our system methodology allows for a wide range of VHAR application design without concern for latency and misalignment effects.
本文提出了 HaptoMapping,一种基于投影的视触觉增强现实(VHAR)系统,能够独立呈现视觉和触觉内容,并在物理表面上呈现一致的视触觉感觉。HaptoMapping 通过使用像素级可见光通信技术,在投影图像中嵌入用户无法察觉的嵌入式控制信号来控制可穿戴触觉显示器。原型系统由高速投影仪和三种类型的触觉设备组成——手指佩戴、手写笔和手臂佩戴。手指佩戴和手写笔设备向用户指尖呈现振动触觉感觉。手臂佩戴设备使用带有同步手投影映射的阵列致动器在用户前臂上呈现抚摸感觉。我们确定开发系统的触觉从视觉感觉的最大延迟为 93.4 毫秒。我们对我们的 VHAR 系统的延迟感知进行了用户研究。结果表明,开发的触觉设备可以呈现触觉感觉而没有用户可察觉的延迟,并且我们的 VHAR 系统的视觉-触觉延迟容限分别为 100、159 和 500 毫秒,适用于手指佩戴、手写笔和手臂佩戴设备。另一个使用手臂佩戴设备的用户研究发现,当每个基板之间的间隔相对稀疏(例如 20 毫米)时,视触觉刷系统保持连续性和愉悦感,并且与仅触觉刷系统相比,在 80 和 150 毫米/秒时显著提高了连续性和愉悦感。最后,我们在日常场景中介绍了四个潜在应用。我们的系统方法允许广泛的 VHAR 应用设计,而无需担心延迟和对准效果。