Suppr超能文献

多层感知机遗传算法神经网络在汉英平行语料库噪声处理中的应用。

Application of Multilayer Perceptron Genetic Algorithm Neural Network in Chinese-English Parallel Corpus Noise Processing.

机构信息

College of Foreign Languages, Guizhou University, Guiyang 550025, China.

College of Medical Humanities, Guizhou Medical University, Guiyang 550025, China.

出版信息

Comput Intell Neurosci. 2021 Dec 20;2021:7144635. doi: 10.1155/2021/7144635. eCollection 2021.

Abstract

This paper uses neural network as a predictive model and genetic algorithm as an online optimization algorithm to simulate the noise processing of Chinese-English parallel corpus. At the same time, according to the powerful random global search mechanism of genetic algorithm, this paper studied the principle and process of noise processing in Chinese-English parallel corpus. Aiming at the task of identifying isolated words for unspecified persons, taking into account the inadequacies of the algorithms in standard genetic algorithms and neural networks, this paper proposes a fast algorithm for training the network using genetic algorithms. Through simulation calculations, different characteristic parameters, the number of training samples, background noise, and whether a specific person affects the recognition result were analyzed and discussed and compared with the traditional dynamic time comparison method. This paper introduces the idea of reinforcement learning, uses different reward mechanisms to solve the inconsistency of loss function and evaluation index measurement methods, and uses different decoding methods to alleviate the problem of exposure bias. It uses various simple genetic operations and the survival of the fittest selection mechanism to guide the learning process and determine the direction of the search, and it can search multiple regions in the solution space at the same time. In addition, it also has the advantage of not being restricted by the restrictive conditions of the search space (such as differentiable, continuous, and unimodal). At the same time, a method of using English subword vectors to initialize the parameters of the translation model is given. The research results show that the neural network recognition method based on genetic algorithm which is given in this paper shows its ability of quickly learning network weights and it is superior to the standard in all aspects. The performance of the algorithm in genetic algorithm and neural network, with high recognition rate and unique application advantages, can achieve a win-win of time and efficiency.

摘要

本文使用神经网络作为预测模型,遗传算法作为在线优化算法,对汉英平行语料库的噪声处理进行模拟。同时,根据遗传算法强大的随机全局搜索机制,研究了汉英平行语料库噪声处理的原理和过程。针对特定人员识别孤立词的任务,考虑到标准遗传算法和神经网络算法的不足,本文提出了一种使用遗传算法快速训练网络的算法。通过模拟计算,分析和讨论了不同特征参数、训练样本数量、背景噪声以及特定人员是否会影响识别结果,并与传统的动态时间比较方法进行了比较。本文引入强化学习的思想,使用不同的奖励机制解决损失函数和评价指标测量方法不一致的问题,使用不同的解码方法缓解暴露偏差问题。它使用各种简单的遗传操作和适者生存的选择机制来指导学习过程并确定搜索方向,可以同时在解空间的多个区域进行搜索。此外,它还具有不受搜索空间的限制条件(如可微、连续和单峰)的优点。同时,还给出了一种使用英语子词向量初始化翻译模型参数的方法。研究结果表明,本文提出的基于遗传算法的神经网络识别方法在快速学习网络权重方面表现出了优异的性能,在各个方面均优于标准算法。遗传算法和神经网络算法的性能具有较高的识别率和独特的应用优势,可以实现时间和效率的双赢。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7def/8712137/abd339a85b63/CIN2021-7144635.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验