Suppr超能文献

用于高效光催化析氢的低陷阱密度二维多环光伏分子。

Two-Dimensional Polycyclic Photovoltaic Molecule with Low Trap Density for High-Performance Photocatalytic Hydrogen Evolution.

作者信息

Zhang Zhenzhen, Si Wenqin, Wu Baohua, Wang Wei, Li Yawen, Ma Wei, Lin Yuze

机构信息

Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.

University of Chinese Academy of Sciences, Beijing, 100049, China.

出版信息

Angew Chem Int Ed Engl. 2022 Mar 1;61(10):e202114234. doi: 10.1002/anie.202114234. Epub 2022 Jan 17.

Abstract

Typical organic semiconductors show a high trap density of states (10 -10  cm ), providing a large number of centers for charge-carrier recombination, thus hindering the development of photocatalytic hydrogen evolution. Here, we design and synthesize a two-dimensional polycyclic photovoltaic material, named as TPP, to reduce the trap density to as low as 2.3×10  cm , which is 1-3 orders of magnitude lower than those of typical organic semiconductors. Moreover, TPP exhibits a broad and strong absorption, ordered molecular packing with a large crystalline coherence length and enhanced electron mobility. Then, the bulk heterojunction nanoparticles (BHJ-NPs) based on a blend of polymer donor (PM6) and TPP exhibit an average hydrogen evolution rate (HER) of 64.31 mmol h  g under AM1.5G sunlight (100 mW cm ), and 72.75 mmol h  g under 330-1100 nm illumination (198 mW cm ) higher than that of the control NPs based on typical PM6 : Y6 (62.67 mmol h  g ).

摘要

典型的有机半导体具有较高的陷阱态密度(10-10 cm),为电荷载流子复合提供了大量中心,从而阻碍了光催化析氢的发展。在此,我们设计并合成了一种二维多环光伏材料,命名为TPP,将陷阱密度降低至低至2.3×10 cm,比典型有机半导体低1-3个数量级。此外,TPP表现出宽泛且强烈的吸收、具有大晶体相干长度的有序分子堆积以及增强的电子迁移率。然后,基于聚合物给体(PM6)和TPP混合物的本体异质结纳米颗粒(BHJ-NPs)在AM1.5G太阳光(100 mW cm)下的平均析氢速率(HER)为64.31 mmol h g,在330-1100 nm光照(198 mW cm)下为72.75 mmol h g,高于基于典型PM6 : Y6(62.67 mmol h g)的对照纳米颗粒。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验