Suppr超能文献

有机半导体异质结纳米颗粒增强光催化析氢

Enhanced photocatalytic hydrogen evolution from organic semiconductor heterojunction nanoparticles.

作者信息

Kosco Jan, Bidwell Matthew, Cha Hyojung, Martin Tyler, Howells Calvyn T, Sachs Michael, Anjum Dalaver H, Gonzalez Lopez Sandra, Zou Lingyu, Wadsworth Andrew, Zhang Weimin, Zhang Lisheng, Tellam James, Sougrat Rachid, Laquai Frédéric, DeLongchamp Dean M, Durrant James R, McCulloch Iain

机构信息

King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Thuwal, Saudi Arabia.

Department of Chemistry and Centre for Plastic Electronics, Imperial College London, London, UK.

出版信息

Nat Mater. 2020 May;19(5):559-565. doi: 10.1038/s41563-019-0591-1. Epub 2020 Feb 3.

Abstract

Photocatalysts formed from a single organic semiconductor typically suffer from inefficient intrinsic charge generation, which leads to low photocatalytic activities. We demonstrate that incorporating a heterojunction between a donor polymer (PTB7-Th) and non-fullerene acceptor (EH-IDTBR) in organic nanoparticles (NPs) can result in hydrogen evolution photocatalysts with greatly enhanced photocatalytic activity. Control of the nanomorphology of these NPs was achieved by varying the stabilizing surfactant employed during NP fabrication, converting it from a core-shell structure to an intermixed donor/acceptor blend and increasing H evolution by an order of magnitude. The resulting photocatalysts display an unprecedentedly high H evolution rate of over 60,000 µmol h g under 350 to 800 nm illumination, and external quantum efficiencies over 6% in the region of maximum solar photon flux.

摘要

由单一有机半导体制成的光催化剂通常存在本征电荷产生效率低下的问题,这导致光催化活性较低。我们证明,在有机纳米颗粒(NP)中引入供体聚合物(PTB7-Th)和非富勒烯受体(EH-IDTBR)之间的异质结,可以得到光催化活性大大增强的析氢光催化剂。通过改变NP制备过程中使用的稳定表面活性剂,实现了对这些NP纳米形态的控制,将其从核壳结构转变为供体/受体混合结构,并使析氢量增加了一个数量级。所得光催化剂在350至800nm光照下显示出超过60,000 µmol h g的前所未有的高析氢速率,并且在最大太阳光子通量区域的外量子效率超过6%。

相似文献

引用本文的文献

1
Unexpected Pathway in Organic Semiconductor Nanoparticle Formation.有机半导体纳米颗粒形成中的意外途径。
ACS Nano. 2025 Aug 12;19(31):28469-28477. doi: 10.1021/acsnano.5c07335. Epub 2025 Jul 31.
5
Photoresponsive Zinc-Based Batteries.光响应型锌基电池
Small Sci. 2023 Jul 21;3(9):2300034. doi: 10.1002/smsc.202300034. eCollection 2023 Sep.

本文引用的文献

1
Elaborately Modified BiVO Photoanodes for Solar Water Splitting.用于太阳能水分解的精心修饰的BiVO光阳极。
Adv Mater. 2019 May;31(20):e1806938. doi: 10.1002/adma.201806938. Epub 2019 Feb 21.
4
The wetter the better.越湿越好。
Nat Chem. 2018 Dec;10(12):1175-1177. doi: 10.1038/s41557-018-0176-7.
8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验