Suppr超能文献

基于 lncRNA 表达的风险评分系统可预测肝癌肿瘤阳性患者的生存情况。

lncRNA Expression-Based Risk Scoring System Can Predict Survival of Tumor-Positive Patients with Hepatocellular Carcinoma.

机构信息

Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning 530021, People's Republic of China.

出版信息

Asian Pac J Cancer Prev. 2021 Dec 1;22(12):3741-3753. doi: 10.31557/APJCP.2021.22.12.3741.

Abstract

BACKGROUND

Long non-coding RNAs (lncRNAs) play critical roles in the progression of hepatocellular carcinoma (HCC). The aim of this study was to explore whether lncRNA expression profiles can predict prognosis of HCC patients with tumors.

METHODS

Expression of lncRNAs in HCC patients based on data in The Cancer Genome Atlas (TCGA) was examined by uni- and multivariate cox analysis to identify associations between clinical features and overall survival (OS) or recurrence-free survival (RFS). Based on our finding that both were independently associated with tumor status, we examined lncRNAs differentially expressed between patients with or without tumors. An lncRNA-based risk scoring system was developed to predict OS and RFS in tumor-positive patients, and it was assessed using uni- and multivariate cox analyses. Potential functions of the prognostic lncRNAs were explored.

RESULTS

A risk scoring system to predict OS for HCC patients with tumors was developed based on the expression of six lncRNAs (AC090921.1, AC012640.1, AL158839.1, AL356056.1, AL359853.1 and C10orf91), and a corresponding scoring system to predict RFS was developed from nine lncRNAs (AL356056.1, AL158839.1, MIR7-3HG, AL445493.2, AP000808.1, AP003354.2, PLCE1-AS1, TH2LCRR and LINC01447). Both risk scoring systems gave areas under receiver operating characteristic curves >0.7. Uni- and multivariate cox analyses showed that both risk scoring systems independently predicted survival even after adjusting for clinical factors. The lncRNAs related to OS may be involved in complement and coagulation cascades, while those related to RFS may be involved in the cell cycle.

CONCLUSION

Risk scoring system based on these lncRNAs may be useful for predicting prognosis of tumor-positive HCC patients.

摘要

背景

长链非编码 RNA(lncRNA)在肝细胞癌(HCC)的进展中发挥着关键作用。本研究旨在探讨 lncRNA 表达谱是否可以预测肿瘤患者的 HCC 患者的预后。

方法

通过单变量和多变量 Cox 分析检查基于癌症基因组图谱(TCGA)中 HCC 患者的 lncRNA 表达,以确定临床特征与总生存期(OS)或无复发生存期(RFS)之间的关联。基于我们发现两者均与肿瘤状态独立相关,我们检查了有或没有肿瘤的患者之间差异表达的 lncRNA。开发了基于 lncRNA 的风险评分系统,以预测肿瘤阳性患者的 OS 和 RFS,并使用单变量和多变量 Cox 分析进行评估。探索了预后 lncRNA 的潜在功能。

结果

基于六个 lncRNA(AC090921.1、AC012640.1、AL158839.1、AL356056.1、AL359853.1 和 C10orf91)的表达,开发了用于预测 HCC 患者肿瘤 OS 的风险评分系统,并且从九个 lncRNA(AL356056.1、AL158839.1、MIR7-3HG、AL445493.2、AP000808.1、AP003354.2、PLCE1-AS1、TH2LCRR 和 LINC01447)开发了用于预测 RFS 的相应评分系统。两个风险评分系统的受试者工作特征曲线下面积均>0.7。单变量和多变量 Cox 分析表明,即使在调整临床因素后,这两个风险评分系统都可以独立预测生存。与 OS 相关的 lncRNA 可能参与补体和凝血级联反应,而与 RFS 相关的 lncRNA 可能参与细胞周期。

结论

基于这些 lncRNA 的风险评分系统可能有助于预测肿瘤阳性 HCC 患者的预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/771c/9080350/c0efe305340c/APJCP-22-3741-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验