School of Life Sciences, Arizona State University, Tempe, United States.
Elife. 2021 Dec 31;10:e70016. doi: 10.7554/eLife.70016.
Most cellular ATP is made by rotary FF ATP synthases using proton translocation-generated clockwise torque on the F c-ring rotor, while F-ATP hydrolysis can force counterclockwise rotation and proton pumping. The F torque-generating mechanism remains elusive even though the F interface of stator subunit-a, which contains the transmembrane proton half-channels, and the c-ring is known from recent FF structures. Here, single-molecule FF rotation studies determined that the pKa values of the half-channels differ, show that mutations of residues in these channels change the pKa values of both half-channels, and reveal the ability of F to undergo single c-subunit rotational stepping. These experiments provide evidence to support the hypothesis that proton translocation through F operates via a Grotthuss mechanism involving a column of single water molecules in each half-channel linked by proton translocation-dependent c-ring rotation. We also observed pH-dependent 11° ATP synthase-direction sub-steps of the c-ring of FF against the torque of F-ATPase-dependent rotation that result from H transfer events from F subunit-a groups with a low pKa to one c-subunit in the c-ring, and from an adjacent c-subunit to stator groups with a high pKa. These results support a mechanism in which alternating proton translocation-dependent 11° and 25° synthase-direction rotational sub-steps of the c-ring occur to sustain FF ATP synthesis.
大多数细胞中的 ATP 是由旋转 FF ATP 合酶利用质子跨膜转运产生的顺时针扭矩通过 F 环转子产生的,而 F-ATP 水解可以迫使逆时针旋转和质子泵出。尽管 FF 结构的最新研究已经揭示了定子亚基-a 的 F 接口包含跨膜质子半通道,以及 F 环,但 F 产生扭矩的机制仍然难以捉摸。本文通过单分子 FF 旋转研究确定了半通道的 pKa 值不同,表明这些通道中的残基突变会改变两个半通道的 pKa 值,并揭示了 F 能够进行单个 c 亚基旋转步的能力。这些实验为质子跨膜转运通过 F 以涉及每个半通道中单个水分子列的 Grotthuss 机制的假设提供了证据,该机制通过质子跨膜转运依赖的 c 环旋转连接。我们还观察到 pH 依赖性的 11° ATP 合酶方向亚步,在 F-ATP 酶依赖的旋转的扭矩下,FF 的 c 环发生了这种亚步,这是由于来自 F 亚基-a 组的低 pKa 的 H 转移事件到 c 环中的一个 c 亚基,以及来自相邻 c 亚基到高 pKa 的定子组。这些结果支持了一种机制,即在质子跨膜转运依赖的 11°和 25°的 c 环旋转亚步之间交替发生,以维持 FF ATP 的合成。