Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.
Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
Mol Biol Evol. 2023 Jun 1;40(6). doi: 10.1093/molbev/msad146.
The passage of protons across membranes through F1Fo-ATP synthases spins their rotors and drives the synthesis of ATP. While the principle of torque generation by proton transfer is known, the mechanisms and routes of proton access and release and their evolution are not fully understood. Here, we show that the entry site and path of protons in the lumenal half channel of mitochondrial ATP synthases are largely defined by a short N-terminal α-helix of subunit-a. In Trypanosoma brucei and other Euglenozoa, the α-helix is part of another polypeptide chain that is a product of subunit-a gene fragmentation. This α-helix and other elements forming the proton pathway are widely conserved across eukaryotes and in Alphaproteobacteria, the closest extant relatives of mitochondria, but not in other bacteria. The α-helix blocks one of two proton routes found in Escherichia coli, resulting in a single proton entry site in mitochondrial and alphaproteobacterial ATP synthases. Thus, the shape of the access half channel predates eukaryotes and originated in the lineage from which mitochondria evolved by endosymbiosis.
质子穿过膜通过 F1Fo-ATP 合酶旋转它们的转子并驱动 ATP 的合成。虽然质子转移产生扭矩的原理是已知的,但质子进入和释放的机制和途径及其演变还不完全清楚。在这里,我们表明,线粒体 ATP 合酶腔半通道中质子的进入位点和路径主要由亚基-a 的短 N 端α-螺旋定义。在布氏锥虫和其他 Euglenozoa 中,α-螺旋是另一条多肽链的一部分,该多肽链是亚基-a 基因片段化的产物。形成质子途径的这个α-螺旋和其他元件在真核生物和最接近的线粒体祖先α变形菌中广泛保守,但在其他细菌中没有。α-螺旋阻塞了在大肠杆菌中发现的两种质子途径之一,导致线粒体和α变形菌 ATP 合酶中只有一个质子进入位点。因此,进入半通道的形状先于真核生物,并起源于通过内共生进化而来的线粒体的谱系。