Suppr超能文献

典型道路交通场景下智能车辆轨迹预测的交互多模型

An Interacting Multiple Model for Trajectory Prediction of Intelligent Vehicles in Typical Road Traffic Scenario.

作者信息

Gao Hongbo, Qin Yechen, Hu Chuan, Liu Yuchao, Li Keqiang

出版信息

IEEE Trans Neural Netw Learn Syst. 2023 Sep;34(9):6468-6479. doi: 10.1109/TNNLS.2021.3136866. Epub 2023 Sep 1.

Abstract

This article presents an interacting multiple model (IMM) for short-term prediction and long-term trajectory prediction of an intelligent vehicle. This model is based on vehicle's physics model and maneuver recognition model. The long-term trajectory prediction is challenging due to the dynamical nature of the system and large uncertainties. The vehicle physics model is composed of kinematics and dynamics models, which could guarantee the accuracy of short-term prediction. The maneuver recognition model is realized by means of hidden Markov model, which could guarantee the accuracy of long-term prediction, and an IMM is adopted to guarantee the accuracy of both short-term prediction and long-term prediction. The experiment results of a real vehicle are presented to show the effectiveness of the prediction method.

摘要

本文提出了一种用于智能车辆短期预测和长期轨迹预测的交互式多模型(IMM)。该模型基于车辆的物理模型和机动识别模型。由于系统的动态特性和较大的不确定性,长期轨迹预测具有挑战性。车辆物理模型由运动学和动力学模型组成,可保证短期预测的准确性。机动识别模型通过隐马尔可夫模型实现,可保证长期预测的准确性,采用IMM可保证短期预测和长期预测的准确性。给出了实车的实验结果,以表明该预测方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验