Suppr超能文献

喉大小对男女发声差异的贡献。

Contribution of laryngeal size to differences between male and female voice production.

机构信息

Department of Head and Neck Surgery, University of California, Los Angeles, 31-24 Rehabilitation Center, 1000 Veteran Avenue, Los Angeles, California 90095-1794, USA.

出版信息

J Acoust Soc Am. 2021 Dec;150(6):4511. doi: 10.1121/10.0009033.

Abstract

In this study we investigated the effect of sex- and age-related differences in vocal fold length, thickness, and depth on voice production in a three-dimensional vocal fold model. The results showed that the cause-effect relationships between vocal fold physiology and voice production previously identified in an adult male-like vocal fold geometry remained qualitatively the same in vocal folds with geometry representative of adult females and children. We further showed that the often-observed differences in voice production between adult males, adult females, and children can be explained by differences in length and thickness. The lower F0, higher flow rate, larger vocal fold vibration amplitude, and higher sound pressure level (SPL) in adult males as compared to adult females and children can be explained by differences in vocal fold length. In contrast, the thickness effect dominated and contributed to the larger closed quotient of vocal fold vibration, larger normalized maximum flow declination rate, and lower H1-H2 in adult males as compared to adult females and children. The effect of differences in vocal fold depth was generally small. When targeting a specific SPL, adult males experienced a lower peak vocal fold contact pressure during phonation than adult females and children.

摘要

在这项研究中,我们研究了声带长度、厚度和深度的性别和年龄相关差异对三维声带模型中发声的影响。结果表明,在代表成年女性和儿童的声带几何形状中,先前在成年男性样声带几何形状中确定的声带生理学和发声之间的因果关系在性质上仍然相同。我们进一步表明,成年男性、成年女性和儿童之间发声的常见差异可以用长度和厚度的差异来解释。与成年女性和儿童相比,成年男性的较低的基频 (F0)、较高的流速、更大的声带振动幅度和更高的声压级 (SPL) 可以用声带长度的差异来解释。相比之下,厚度效应占主导地位,导致成年男性的声带振动闭合比更大、归一化最大流速下降率更大以及 H1-H2 更低,与成年女性和儿童相比。声带深度差异的影响通常较小。当目标是特定的 SPL 时,成年男性在发声期间经历的峰值声带接触压力低于成年女性和儿童。

相似文献

1
Contribution of laryngeal size to differences between male and female voice production.
J Acoust Soc Am. 2021 Dec;150(6):4511. doi: 10.1121/10.0009033.
5
Vocal fold dynamics for frequency change.
J Voice. 2014 Jul;28(4):395-405. doi: 10.1016/j.jvoice.2013.12.005. Epub 2014 Apr 13.
7
Vocal dose measures: quantifying accumulated vibration exposure in vocal fold tissues.
J Speech Lang Hear Res. 2003 Aug;46(4):919-32. doi: 10.1044/1092-4388(2003/072).
8
Objective analysis of vocal warm-up with special reference to ergonomic factors.
J Voice. 2001 Mar;15(1):36-53. doi: 10.1016/s0892-1997(01)00005-4.
10
Dynamic MRI of larynx and vocal fold vibrations in normal phonation.
J Voice. 2009 Mar;23(2):235-9. doi: 10.1016/j.jvoice.2007.08.008. Epub 2007 Dec 21.

引用本文的文献

1
2
Normative Thresholds for Acoustic Estimates of Relative Fundamental Frequency.
J Voice. 2025 Jul 23. doi: 10.1016/j.jvoice.2025.07.006.
3
Dynamically Quantifying Vocal Fold Thickness: Effects of Medialization Implant Location on Glottal Shape and Phonation.
Bioengineering (Basel). 2025 Jun 18;12(6):667. doi: 10.3390/bioengineering12060667.
4
The Pediatric Vocal Mechanism: Structure and Function.
J Voice. 2025 Apr 4. doi: 10.1016/j.jvoice.2025.03.025.
5
Effects of laryngeal manipulations on voice gender perception.
Interspeech. 2022 Sep;2022:1856-1860. doi: 10.21437/interspeech.2022-10815.
7
Asymmetric triangular body-cover model of the vocal folds with bilateral intrinsic muscle activation.
J Acoust Soc Am. 2024 Aug 1;156(2):939-953. doi: 10.1121/10.0028164.
8
Principal dimensions of voice production and their role in vocal expression.
J Acoust Soc Am. 2024 Jul 1;156(1):278-283. doi: 10.1121/10.0027913.
10
Histologic Examination of Vocal Fold Mucosal Wave and Vibration.
Laryngoscope. 2024 Jan;134(1):264-271. doi: 10.1002/lary.30928. Epub 2023 Jul 31.

本文引用的文献

1
Quantitative and Qualitative Electroglottographic Wave Shape Differences in Children and Adults Using Voice Map-Based Analysis.
J Speech Lang Hear Res. 2021 Aug 9;64(8):2977-2995. doi: 10.1044/2021_JSLHR-20-00717. Epub 2021 Jul 28.
4
Estimation of vocal fold physiology from voice acoustics using machine learning.
J Acoust Soc Am. 2020 Mar;147(3):EL264. doi: 10.1121/10.0000927.
5
Vocal Feminization for Transgender Women: Current Strategies and Patient Perspectives.
Int J Gen Med. 2020 Feb 12;13:43-52. doi: 10.2147/IJGM.S205102. eCollection 2020.
6
Three-dimensional vocal fold structural change due to implant insertion in medialization laryngoplasty.
PLoS One. 2020 Jan 30;15(1):e0228464. doi: 10.1371/journal.pone.0228464. eCollection 2020.
8
Vocal fold contact pressure in a three-dimensional body-cover phonation model.
J Acoust Soc Am. 2019 Jul;146(1):256. doi: 10.1121/1.5116138.
10
Biaxial mechanical properties of human vocal fold cover under vocal fold elongation.
J Acoust Soc Am. 2017 Oct;142(4):EL356. doi: 10.1121/1.5006205.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验