Kashyap Aditya, Rapsomaniki Maria Anna, Barros Vesna, Fomitcheva-Khartchenko Anna, Martinelli Adriano Luca, Rodriguez Antonio Foncubierta, Gabrani Maria, Rosen-Zvi Michal, Kaigala Govind
IBM Research Europe -Säumerstrasse 4, Rüschlikon CH-8803, Zurich, Switzerland.
Department of Healthcare Informatics, IBM Research, IBM R&D Labs, University of Haifa Campus, Mount Carmel, Haifa, 3498825, Israel; The Hebrew University, The Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel.
Trends Biotechnol. 2022 Jun;40(6):647-676. doi: 10.1016/j.tibtech.2021.11.006. Epub 2021 Dec 28.
Tumors are unique and complex ecosystems, in which heterogeneous cell subpopulations with variable molecular profiles, aggressiveness, and proliferation potential coexist and interact. Understanding how heterogeneity influences tumor progression has important clinical implications for improving diagnosis, prognosis, and treatment response prediction. Several recent innovations in data acquisition methods and computational metrics have enabled the quantification of spatiotemporal heterogeneity across different scales of tumor organization. Here, we summarize the most promising efforts from a common experimental and computational perspective, discussing their advantages, shortcomings, and challenges. With personalized medicine entering a new era of unprecedented opportunities, our vision is that of future workflows integrating across modalities, scales, and dimensions to capture intricate aspects of the tumor ecosystem and to open new avenues for improved patient care.
肿瘤是独特而复杂的生态系统,其中具有不同分子特征、侵袭性和增殖潜力的异质性细胞亚群共存并相互作用。了解异质性如何影响肿瘤进展对于改善诊断、预后和治疗反应预测具有重要的临床意义。数据采集方法和计算指标方面的一些最新创新使得能够在肿瘤组织的不同尺度上对时空异质性进行量化。在这里,我们从常见的实验和计算角度总结了最有前景的研究成果,讨论了它们的优点、缺点和挑战。随着精准医学进入一个前所未有的机遇新时代,我们的愿景是未来的工作流程能够跨模态、尺度和维度进行整合,以捕捉肿瘤生态系统的复杂方面,并为改善患者护理开辟新途径。