Suppr超能文献

用于非侵入性早期诊断乳腺癌的水平数据集成分类器的开发:RENOVATE 研究方案。

Development of a hoRizontal data intEgration classifier for NOn-invasive early diAgnosis of breasT cancEr: the RENOVATE study protocol.

机构信息

Department of Internal Medicine, Università degli Studi di Genova, Genova, Italy.

Ospedale Policlinico San Martino Istituto di Ricovero e Cura a Carattere Scientifico per l'Oncologia, Genova, Italy.

出版信息

BMJ Open. 2021 Dec 31;11(12):e054256. doi: 10.1136/bmjopen-2021-054256.

Abstract

INTRODUCTION

Standard procedures aimed at the early diagnosis of breast cancer (BC) present suboptimal accuracy and imply the execution of invasive and sometimes unnecessary tissue biopsies. The assessment of circulating biomarkers for diagnostic purposes, together with radiomics, is of great potential in BC management.

METHODS AND ANALYSIS

This is a prospective translational study investigating the accuracy of the combined assessment of multiple circulating analytes together with radiomic variables for early BC diagnosis. Up to 750 patients will be recruited at their presentation at the Diagnostic Senology Unit of Ospedale Policlinico San Martino (Genoa, IT) for the execution of a diagnostic biopsy after the detection of a suspect breast lesion (t0). Each recruited patient will be asked to donate peripheral blood and urine before undergoing breast biopsy. Blood and urine samples will also be collected from a cohort of 100 patients with negative mammography. For cases with histological diagnosis of invasive BC, a second sample of blood and urine will be collected after breast surgery. Circulating tumour DNA, cell-free methylated DNA and circulating proteins will be assessed in samples collected at t0 from patients with stage I-IIA BC at surgery together with those collected from patients with histologically confirmed benign lesions of similar size and from healthy controls with negative mammography. These analyses will be combined with radiomic variables extracted with freeware algorithms applied to cases and matched controls for which digital mammography is available. The overall goal of the present study is to develop a horizontal data integration classifier for the early diagnosis of BC.

ETHICS AND DISSEMINATION

This research protocol has been approved by Regione Liguria Ethics Committee (reference number: 2019/75, study ID: 4452). Patients will be required to provide written informed consent. Results will be published in international peer-reviewed scientific journals.

TRIAL REGISTRATION NUMBER

NCT04781062.

摘要

简介

旨在早期诊断乳腺癌(BC)的标准程序准确性欠佳,需要进行有创且有时是不必要的组织活检。为了达到诊断目的,循环生物标志物与放射组学一起评估在 BC 管理中具有很大的潜力。

方法和分析

这是一项前瞻性转化研究,旨在评估联合评估多种循环分析物与放射组学变量对早期 BC 诊断的准确性。在发现可疑乳腺病变(t0)后,将在热那亚 Ospedale Policlinico San Martino 的诊断乳腺科为多达 750 名患者进行诊断性活检。招募的每位患者将在进行乳腺活检前被要求捐献外周血和尿液。还将从 100 名乳房 X 线摄影检查结果为阴性的患者中采集血液和尿液样本。对于有组织学诊断为浸润性 BC 的病例,将在乳房手术后采集血液和尿液的第二份样本。将在手术时评估 I 期-IIA 期 BC 患者在 t0 时采集的血液和尿液样本中循环肿瘤 DNA、无细胞甲基化 DNA 和循环蛋白,以及从组织学证实为良性且大小相似的病变患者和阴性乳房 X 线摄影检查的健康对照中采集的样本。这些分析将与免费软件算法提取的放射组学变量相结合,应用于数字乳房 X 线摄影检查有记录的病例和匹配的对照。本研究的总体目标是开发用于早期诊断 BC 的横向数据集成分类器。

伦理和传播

本研究方案已获得利古里亚地区伦理委员会的批准(参考编号:2019/75,研究 ID:4452)。患者将需要提供书面知情同意书。结果将发表在国际同行评议的科学期刊上。

试验注册号

NCT04781062。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b50/8720992/c7f176a97365/bmjopen-2021-054256f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验