Suppr超能文献

新兴机器学习技术在阿尔茨海默病细胞复杂系统建模中的应用。

Emerging Machine Learning Techniques for Modelling Cellular Complex Systems in Alzheimer's Disease.

机构信息

Department of Informatics, Ionian University, Corfu, Greece.

出版信息

Adv Exp Med Biol. 2021;1338:199-208. doi: 10.1007/978-3-030-78775-2_24.

Abstract

We live in the big data era in the biomedical field, where machine learning has a very important contribution to the interpretation of complex biological processes and diseases, since it has the potential to create predictive models from multidimensional data sets. Part of the application of machine learning in biomedical science is to study and model complex cellular systems such as biological networks. In this context, the study of complex diseases, such as Alzheimer's diseases (AD), benefits from established methodologies of network science and machine learning as they offer algorithmic tools and techniques that can address the limitations and challenges of modeling and studying cellular AD-related networks. In this paper we analyze the opportunities and challenges at the intersection of machine learning and network biology and whether this can affect the biological interpretation and clarification of diseases. Specifically, we focus on GRN techniques which through omics data and the use of machine learning techniques can construct a network that captures all the information at the molecular level for the disease under study. We record the emerging machine learning techniques that are focus on ensemble tree-based techniques in the area of classification and regression. Their potential for unraveling the complexity of model cellular systems in complex diseases, such as AD, offers the opportunity for novel machine learning methodologies to decipher the mechanisms of the various AD processes.

摘要

我们生活在生物医学领域的大数据时代,机器学习在解释复杂的生物过程和疾病方面做出了非常重要的贡献,因为它有可能从多维数据集创建预测模型。机器学习在生物医学科学中的部分应用是研究和模拟复杂的细胞系统,如生物网络。在这种情况下,研究复杂疾病,如阿尔茨海默病 (AD),受益于网络科学和机器学习的既定方法,因为它们提供了算法工具和技术,可以解决建模和研究与细胞 AD 相关网络的局限性和挑战。在本文中,我们分析了机器学习和网络生物学交叉点的机会和挑战,以及这是否会影响疾病的生物学解释和阐明。具体来说,我们专注于 GRN 技术,该技术可以通过组学数据和机器学习技术构建一个网络,捕获研究疾病的分子水平上的所有信息。我们记录了在分类和回归领域中基于集成树的新兴机器学习技术。它们在揭示 AD 等复杂疾病中细胞系统复杂性方面的潜力为破译各种 AD 过程的机制提供了机会,从而为新的机器学习方法提供了机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验