National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
Int J Mol Sci. 2021 Mar 12;22(6):2903. doi: 10.3390/ijms22062903.
The exponential growth of biomedical data in recent years has urged the application of numerous machine learning techniques to address emerging problems in biology and clinical research. By enabling the automatic feature extraction, selection, and generation of predictive models, these methods can be used to efficiently study complex biological systems. Machine learning techniques are frequently integrated with bioinformatic methods, as well as curated databases and biological networks, to enhance training and validation, identify the best interpretable features, and enable feature and model investigation. Here, we review recently developed methods that incorporate machine learning within the same framework with techniques from molecular evolution, protein structure analysis, systems biology, and disease genomics. We outline the challenges posed for machine learning, and, in particular, deep learning in biomedicine, and suggest unique opportunities for machine learning techniques integrated with established bioinformatics approaches to overcome some of these challenges.
近年来,生物医学数据呈指数级增长,促使人们应用大量机器学习技术来解决生物学和临床研究中出现的新问题。这些方法可以通过自动提取、选择和生成预测模型来有效地研究复杂的生物系统。机器学习技术经常与生物信息学方法以及经过整理的数据库和生物网络集成,以增强训练和验证、识别最佳可解释的特征以及实现特征和模型研究。在这里,我们回顾了最近开发的方法,这些方法将机器学习与分子进化、蛋白质结构分析、系统生物学和疾病基因组学的技术纳入同一个框架。我们概述了机器学习(特别是生物医学中的深度学习)所面临的挑战,并提出了将机器学习技术与成熟的生物信息学方法相结合的独特机会,以克服其中的一些挑战。