Department of Marine Science, Texas A & M University at Galveston, Galveston, TX 77551, United States.
Department of Marine Science, Texas A & M University at Galveston, Galveston, TX 77551, United States.
Sci Total Environ. 2022 Mar 25;814:152546. doi: 10.1016/j.scitotenv.2021.152546. Epub 2021 Dec 30.
The complex biogeochemical behavior of iodine (I) isotopes and their interaction with natural organic matter (NOM) pose a challenge for transport models. Here, we present results from iodination experiments with humic acid (HA) and fulvic acid (FA) using H-C heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR) spectroscopy. Even though not a quantitative approach, H-C HSQC NMR corroborated that iodination of NOM occurs primarily through aromatic electrophilic substitution of proton by I, and also revealed how iodination chemically alters HA and FA in a manner that potentially affects the mobility of iodinated NOM in the environment. Three types of iodination experiments were conducted with HA and FA: a) non-enzymatic iodination by IO (pH 3) and I (pH 4 and 7), b) addition of lactoperoxidase to promote I-iodination in the presence of the co-substrate, HO (pH 7), and c) addition of laccase for facilitating I-iodination in the presence of O, with or without a mediator (pH 4). When mediators or HO were present, extracellular oxidases and peroxidases enhanced I incorporation into NOM by between 54% and 3400%. Iodination of HA, which was less than that of FA, enhanced HA's stability (inferred from increases in aliphatic compounds, decreases in carbohydrate moieties, and thus increased molecular hydrophobicity) yet reduced HA's tendency to incorporate more iodine. As such, HA is expected to act more as a sink for iodine in the environment. In contrast, iodination of FA appeared to generate additional iodine binding sites, which resulted in greater iodine uptake capability and enhanced mobility (inferred from decreases in aliphatic compounds, increases in carbohydrates, and thus decreases in molecular hydrophobicity). These results indicate that certain NOM moieties may enhance while others may inhibit radioiodine mobility in the aqueous environment.
碘 (I) 同位素的复杂生物地球化学行为及其与天然有机物 (NOM) 的相互作用给传输模型带来了挑战。在这里,我们使用 H-C 异核单量子相干 (HSQC) 核磁共振 (NMR) 光谱展示了腐殖酸 (HA) 和富里酸 (FA) 的碘化实验结果。尽管这不是一种定量方法,但 H-C HSQC NMR 证实了 NOM 的碘化主要通过质子的芳香亲电取代来发生,并且还揭示了碘化如何以化学方式改变 HA 和 FA,从而可能影响环境中碘化 NOM 的迁移性。对 HA 和 FA 进行了三种类型的碘化实验:a) IO(pH 3)和 I(pH 4 和 7)的非酶促碘化,b) 在共底物 HO(pH 7)存在下添加乳过氧化物酶以促进 I-碘化,以及 c) 添加漆酶以在存在 O 的情况下促进 I-碘化,有或没有介体(pH 4)。当存在介体或 HO 时,细胞外氧化酶和过氧化物酶将 I 掺入 NOM 的比例提高了 54%至 3400%。HA 的碘化程度小于 FA,增强了 HA 的稳定性(从脂肪族化合物增加、糖基部分减少以及因此分子疏水性增加推断得出),但降低了 HA 吸收更多碘的趋势。因此,HA 预计在环境中更像是碘的汇。相比之下,FA 的碘化似乎产生了更多的碘结合位点,这导致了更大的碘吸收能力和增强的迁移性(从脂肪族化合物减少、碳水化合物增加以及因此分子疏水性降低推断得出)。这些结果表明,某些 NOM 部分可能会增强而其他部分可能会抑制水相环境中的放射性碘迁移性。