School of Population and Public Health, University of British Columbia, Vancouver, Canada; British Columbia Centre for Disease Control, Vancouver, Canada.
School of Population and Public Health, University of British Columbia, Vancouver, Canada; Centre for Health Evaluation and Outcome Sciences, Vancouver, Canada.
Ann Epidemiol. 2022 Apr;68:24-31. doi: 10.1016/j.annepidem.2021.12.009. Epub 2021 Dec 29.
Unmeasured confounding poses a serious threat to observational studies of post-TB health outcomes. E-values have been recently proposed as a method to assess the magnitude of unmeasured confounding necessary to nullify, or to render non-significant, relative effect estimates from observational studies.
We calculated E-values for both the risk ratio (RR) point estimates and their lower 95% confidence limits (LCL) from studies of post-TB mortality, respiratory disease, and cardiovascular disease (CVD) included in published systematic reviews within and across post-TB outcome domains. We also employed a meta-analytic E-value approach to estimate the proportion of unconfounded study RRs greater than 1.1 at different levels of unmeasured confounding.
Across post-TB health outcome domains, we observed a median E-value of 5.59 (IQR = 3.19-7.35) for RRs, and 2.95 (IQR = 1.71-4.61) for LCLs. Post-TB mortality studies had higher median E-values (E-value = 6.90 and E-value = 4.54) than studies of respiratory disease (E-value = 5.59, E-value = 2.94) or CVD (E-value = 3.90, E-value = 1.81). The E-value at which the estimated proportion of studies with unconfounded RRs greater than 1.1 would remain over 0.7 was 3.45 for post-TB mortality, 3.96 for post-TB respiratory disease, and 1.71 for post-TB CVD meta-analyses.
Unmeasured confounding with an association of 2.95 or greater with both the exposure (TB) and outcome, on the risk ratio scale, could render most post-TB health studies' findings statistically non-significant. Post-TB mortality and respiratory disease studies had higher E-values than TB-CVD studies, indicating that either (a) TB-CVD studies may be more susceptible to unmeasured confounding bias, or (b) the true effect of TB on CVD is lower.
在结核病后健康结局的观察性研究中,未测量的混杂因素构成了严重威胁。E 值最近被提议作为一种方法来评估消除或使观察性研究的相对效应估计值变得无统计学意义所需的未测量混杂的程度。
我们计算了发表的系统评价中结核病后死亡率、呼吸疾病和心血管疾病(CVD)研究中风险比(RR)点估计值及其 95%置信下限(LCL)的 E 值。我们还采用了荟萃分析 E 值方法来估计在不同程度未测量混杂的情况下,无混杂的研究 RR 大于 1.1 的比例。
在结核病后健康结局领域内,我们观察到 RR 的中位数 E 值为 5.59(IQR=3.19-7.35),LCL 的中位数 E 值为 2.95(IQR=1.71-4.61)。结核病后死亡率研究的中位数 E 值(E 值=6.90 和 E 值=4.54)高于呼吸疾病(E 值=5.59,E 值=2.94)或 CVD(E 值=3.90,E 值=1.81)研究。在估计无混杂 RR 大于 1.1 的研究比例将保持在 0.7 以上的 E 值时,结核病后死亡率、结核病后呼吸疾病和结核病后 CVD 的 E 值分别为 3.45、3.96 和 1.71。
在风险比尺度上,与暴露(结核病)和结局均具有 2.95 或更大关联的未测量混杂因素可能使大多数结核病后健康研究的结果在统计学上变得无显著性。结核病后死亡率和呼吸疾病研究的 E 值高于结核病后 CVD 研究,这表明(a)结核病后 CVD 研究可能更容易受到未测量的混杂偏倚影响,或者(b)结核病对 CVD 的真实影响较低。