Suppr超能文献

肿瘤微环境代谢物指导 T 细胞分化和功能。

Tumor microenvironment metabolites directing T cell differentiation and function.

机构信息

Division of Infectious Diseases, Allergy and Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA.

Division of Infectious Diseases, Allergy and Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA; Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, MO 63104, USA.

出版信息

Trends Immunol. 2022 Feb;43(2):132-147. doi: 10.1016/j.it.2021.12.004. Epub 2021 Dec 29.

Abstract

Metabolic reprogramming of cancer cells creates a unique tumor microenvironment (TME) characterized by the limited availability of nutrients, which subsequently affects the metabolism, differentiation, and function of tumor-infiltrating T lymphocytes (TILs). TILs can also be inhibited by tumor-derived metabolic waste products and low oxygen. Therefore, a thorough understanding of how such unique metabolites influence mammalian T cell differentiation and function can inform novel anticancer therapeutic approaches. Here, we highlight the importance of these metabolites in modulating various T cell subsets within the TME, dissecting how these changes might alter clinical outcomes. We explore potential TME metabolic determinants that might constitute candidate targets for cancer immunotherapies, ideally leading to future strategies for reprogramming tumor metabolism to potentiate anticancer T cell functions.

摘要

癌细胞的代谢重编程会产生一个独特的肿瘤微环境(TME),其特点是营养物质的有限可用性,这会继而影响肿瘤浸润的 T 淋巴细胞(TILs)的代谢、分化和功能。肿瘤衍生的代谢废物和低氧也会抑制 TILs。因此,深入了解这些独特代谢物如何影响哺乳动物 T 细胞的分化和功能,可以为新的抗癌治疗方法提供信息。在这里,我们强调了这些代谢物在调节 TME 中各种 T 细胞亚群中的重要性,剖析了这些变化如何改变临床结果。我们探讨了可能构成癌症免疫疗法候选靶点的 TME 代谢决定因素,以期为重塑肿瘤代谢以增强抗癌 T 细胞功能的未来策略提供参考。

相似文献

1
Tumor microenvironment metabolites directing T cell differentiation and function.
Trends Immunol. 2022 Feb;43(2):132-147. doi: 10.1016/j.it.2021.12.004. Epub 2021 Dec 29.
2
Unlocking the potential: Targeting metabolic pathways in the tumor microenvironment for Cancer therapy.
Biochim Biophys Acta Rev Cancer. 2024 Sep;1879(5):189166. doi: 10.1016/j.bbcan.2024.189166. Epub 2024 Aug 5.
4
Emerging role of metabolic reprogramming in tumor immune evasion and immunotherapy.
Sci China Life Sci. 2021 Apr;64(4):534-547. doi: 10.1007/s11427-019-1735-4. Epub 2020 Aug 17.
6
Adenosine mediates functional and metabolic suppression of peripheral and tumor-infiltrating CD8 T cells.
J Immunother Cancer. 2019 Oct 10;7(1):257. doi: 10.1186/s40425-019-0719-5.
7
Metabolic reprogramming of the tumor microenvironment to enhance immunotherapy.
BMB Rep. 2024 Sep;57(9):388-399. doi: 10.5483/BMBRep.2024-0031.
8
Targeting Tumor Metabolism: A New Challenge to Improve Immunotherapy.
Front Immunol. 2018 Feb 23;9:353. doi: 10.3389/fimmu.2018.00353. eCollection 2018.
9
Targeting the immune microenvironment for ovarian cancer therapy.
Front Immunol. 2023 Dec 18;14:1328651. doi: 10.3389/fimmu.2023.1328651. eCollection 2023.
10
Lipids for CD8 TILs: Beneficial or harmful?
Front Immunol. 2022 Oct 7;13:1020422. doi: 10.3389/fimmu.2022.1020422. eCollection 2022.

引用本文的文献

1
Dual metabolism-disrupted nanoparticles for reprogramming the immune microenvironment to potentiate cuproptosis immunotherapy.
Mater Today Bio. 2025 Apr 23;32:101799. doi: 10.1016/j.mtbio.2025.101799. eCollection 2025 Jun.
2
Resting CD4 regulatory T cell and neuroblastoma: A Mendelian randomization study.
Pediatr Discov. 2024 Jun 8;2(2):e85. doi: 10.1002/pdi3.85. eCollection 2024 Jun.
3
The role of bile acid metabolism-related genes in prognosis assessment of hepatocellular carcinoma and identification of NPC1 as a biomarker.
Front Endocrinol (Lausanne). 2025 May 29;16:1588529. doi: 10.3389/fendo.2025.1588529. eCollection 2025.
4
Impact of mitochondrial metabolism on T-cell dysfunction in chronic lymphocytic leukemia.
Front Cell Dev Biol. 2025 Apr 17;13:1577081. doi: 10.3389/fcell.2025.1577081. eCollection 2025.
5
Prognostic value of the triglyceride-glucose index in advanced gastric cancer: A call for further exploration.
World J Gastroenterol. 2025 Apr 21;31(15):104574. doi: 10.3748/wjg.v31.i15.104574.
6
is a metabolic checkpoint in triple-negative breast cancer: Insights from multiple omics analysis and experiments.
Mol Ther Oncol. 2025 Mar 7;33(2):200963. doi: 10.1016/j.omton.2025.200963. eCollection 2025 Jun 18.
8
Targeting metabolic dysfunction of CD8 T cells and natural killer cells in cancer.
Nat Rev Drug Discov. 2025 Mar;24(3):190-208. doi: 10.1038/s41573-024-01098-w. Epub 2024 Dec 12.
9
Role of vascular endothelium and exosomes in cancer progression and therapy (Review).
Int J Oncol. 2025 Jan;66(1). doi: 10.3892/ijo.2024.5712. Epub 2024 Dec 5.
10
Inflammation and Immunity in Liver Neoplasms: Implications for Future Therapeutic Strategies.
Mol Cancer Ther. 2025 Feb 4;24(2):188-199. doi: 10.1158/1535-7163.MCT-23-0726.

本文引用的文献

1
Citrate Promotes Excessive Lipid Biosynthesis and Senescence in Tumor Cells for Tumor Therapy.
Adv Sci (Weinh). 2022 Jan;9(1):e2101553. doi: 10.1002/advs.202101553. Epub 2021 Nov 7.
3
Uptake of oxidized lipids by the scavenger receptor CD36 promotes lipid peroxidation and dysfunction in CD8 T cells in tumors.
Immunity. 2021 Jul 13;54(7):1561-1577.e7. doi: 10.1016/j.immuni.2021.05.003. Epub 2021 Jun 7.
4
Reprogramming lipid metabolism prevents effector T cell senescence and enhances tumor immunotherapy.
Sci Transl Med. 2021 Mar 31;13(587). doi: 10.1126/scitranslmed.aaz6314.
5
CD36-mediated ferroptosis dampens intratumoral CD8 T cell effector function and impairs their antitumor ability.
Cell Metab. 2021 May 4;33(5):1001-1012.e5. doi: 10.1016/j.cmet.2021.02.015. Epub 2021 Mar 9.
6
Tumor methionine metabolism drives T-cell exhaustion in hepatocellular carcinoma.
Nat Commun. 2021 Mar 5;12(1):1455. doi: 10.1038/s41467-021-21804-1.
7
The cancer metabolic reprogramming and immune response.
Mol Cancer. 2021 Feb 5;20(1):28. doi: 10.1186/s12943-021-01316-8.
8
Inhibition of succinate dehydrogenase activity impairs human T cell activation and function.
Sci Rep. 2021 Jan 14;11(1):1458. doi: 10.1038/s41598-020-80933-7.
9
Cancer SLC43A2 alters T cell methionine metabolism and histone methylation.
Nature. 2020 Sep;585(7824):277-282. doi: 10.1038/s41586-020-2682-1. Epub 2020 Sep 2.
10
Cholesterol metabolism in cancer: mechanisms and therapeutic opportunities.
Nat Metab. 2020 Feb;2(2):132-141. doi: 10.1038/s42255-020-0174-0. Epub 2020 Feb 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验