Suppr超能文献

基于任务和静息态功能脑连接预测儿童的数学技能。

Predicting children's math skills from task-based and resting-state functional brain connectivity.

机构信息

Department of Psychology and Human Development, Peabody College, Vanderbilt University, Nashville, TN 37212, USA.

Brain and Mind Institute, Western University, London, ON N6A 3K7, Canada.

出版信息

Cereb Cortex. 2022 Sep 19;32(19):4204-4214. doi: 10.1093/cercor/bhab476.

Abstract

A critical goal of cognitive neuroscience is to predict behavior from neural structure and function, thereby providing crucial insights into who might benefit from clinical and/or educational interventions. Across development, the strength of functional connectivity among a distributed set of brain regions is associated with children's math skills. Therefore, in the present study we use connectome-based predictive modeling to investigate whether functional connectivity during numerical processing and at rest "predicts" children's math skills (N = 31, Mage = 9.21 years, 14 Female). Overall, we found that functional connectivity during symbolic number comparison and rest, but not during nonsymbolic number comparison, predicts children's math skills. Each task revealed a largely distinct set of predictive connections distributed across canonical brain networks and major brain lobes. Most of these predictive connections were negatively correlated with children's math skills so that weaker connectivity predicted better math skills. Notably, these predictive connections were largely nonoverlapping across task states, suggesting children's math abilities may depend on state-dependent patterns of network segregation and/or regional specialization. Furthermore, the current predictive modeling approach moves beyond brain-behavior correlations and toward building models of brain connectivity that may eventually aid in predicting future math skills.

摘要

认知神经科学的一个关键目标是从神经结构和功能预测行为,从而为谁可能从临床和/或教育干预中受益提供重要的见解。在整个发展过程中,一组分布式脑区之间的功能连接强度与儿童的数学技能相关。因此,在本研究中,我们使用基于连接组的预测模型来研究数值处理和休息期间的功能连接是否“预测”儿童的数学技能(N=31,Mage=9.21 岁,女性 14 人)。总的来说,我们发现符号数比较和休息期间的功能连接,但不是非符号数比较期间的功能连接,预测了儿童的数学技能。每个任务都揭示了一组分布在典型大脑网络和主要大脑叶上的预测连接,这些连接大多是不同的。这些预测连接与儿童的数学技能呈负相关,因此连接较弱预示着数学技能较好。值得注意的是,这些预测连接在任务状态之间基本没有重叠,这表明儿童的数学能力可能取决于状态相关的网络分离和/或区域专业化模式。此外,目前的预测建模方法超越了脑-行为相关性,朝着建立可能有助于预测未来数学技能的脑连接模型发展。

相似文献

7
Early math achievement and functional connectivity in the fronto-parietal network.早期数学成就与额顶网络的功能连接。
Dev Cogn Neurosci. 2012 Feb 15;2 Suppl 1(Suppl 1):S139-51. doi: 10.1016/j.dcn.2011.11.003. Epub 2011 Nov 22.
8
The role of early language abilities on math skills among Chinese children.早期语言能力对中国儿童数学技能的作用。
PLoS One. 2017 Jul 27;12(7):e0181074. doi: 10.1371/journal.pone.0181074. eCollection 2017.
10

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验