Suppr超能文献

预测建模与天然化合物对 SARS-CoV-2 受体结合域的治疗性再利用。

Predictive modeling and therapeutic repurposing of natural compounds against the receptor-binding domain of SARS-CoV-2.

机构信息

Department of Bioinformatics, SRM University, Sonepat, Haryana, India.

Department of Computer Science, Jamia Millia Islamia, New Delhi, India.

出版信息

J Biomol Struct Dyn. 2023 Mar;41(5):1527-1539. doi: 10.1080/07391102.2021.2021993. Epub 2022 Jan 3.

Abstract

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a member of the Coronaviridae family, causing major destructions to human life directly and indirectly to the economic crisis around the world. Although there is significant reporting on the whole genome sequences and updated data for the different receptors are widely analyzed and screened to find a proper medication. Only a few bioassay experiments were completed against SARS-CoV-2 spike protein. We collected the compounds dataset from the PubChem Bioassay database having 1786 compounds and split it into the ratio of 80-20% for model training and testing purposes, respectively. Initially, we have created 11 models and validated them using a fivefold validation strategy. The hybrid consensus model shows a predictive accuracy of 95.5% for training and 94% for the test dataset. The model was applied to screen a virtual chemical library of Natural products of 2598 compounds. Our consensus model has successfully identified 75 compounds with an accuracy range of 70-100% as active compounds against SARS-CoV-2 RBD protein. The output of ML data (75 compounds) was taken for the molecular docking and dynamics simulation studies. In the complete analysis, the Epirubicin and Daunorubicin have shown the docking score of -9.937 and -9.812, respectively, and performed well in the molecular dynamics simulation studies. Also, Pirarubicin, an analogue of anthracycline, has widely been used due to its lower cardiotoxicity. It shows the docking score of -9.658, which also performed well during the complete analysis. Hence, after the following comprehensive pipeline-based study, these drugs can be further tested for further human utilization.Communicated by Ramaswamy H. Sarma.

摘要

严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)是冠状病毒科的一个成员,它直接和间接地对全球经济危机造成了重大破坏。尽管有大量关于全基因组序列的报道,但广泛分析和筛选不同的受体以寻找合适的药物。只有少数针对 SARS-CoV-2 刺突蛋白的生物测定实验完成。我们从 PubChem 生物测定数据库中收集了化合物数据集,其中包含 1786 种化合物,并将其分为 80-20%的比例用于模型训练和测试目的。最初,我们创建了 11 个模型,并使用五重验证策略对其进行验证。混合共识模型对训练集的预测准确率为 95.5%,对测试集的预测准确率为 94%。该模型被应用于筛选 2598 种天然产物的虚拟化学文库。我们的共识模型成功地识别出了 75 种化合物,其活性化合物对 SARS-CoV-2 RBD 蛋白的准确性范围为 70-100%。ML 数据(75 种化合物)的输出用于分子对接和动力学模拟研究。在完整的分析中,表柔比星和柔红霉素的对接评分分别为-9.937 和-9.812,并且在分子动力学模拟研究中表现良好。此外,蒽环类抗生素的类似物吡柔比星,由于其较低的心脏毒性而被广泛使用。它的对接评分为-9.658,在整个分析中表现也很好。因此,在进行了以下全面的基于管道的研究之后,这些药物可以进一步进行测试,以进一步用于人类。由 Ramaswamy H. Sarma 交流。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验