Jones Chloe M, Robkis D Miklos, Blizzard Robert J, Munari Mika, Venkatesh Yarra, Mihaila Tiberiu S, Eddins Alex J, Mehl Ryan A, Zagotta William N, Gordon Sharona E, Petersson E James
Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania 3700 Hamilton Walk Philadelphia PA 19104 USA.
Chem Sci. 2021 Aug 3;12(36):11955-11964. doi: 10.1039/d1sc01914g. eCollection 2021 Sep 22.
Acridonylalanine (Acd) is a fluorescent amino acid that is highly photostable, with a high quantum yield and long fluorescence lifetime in water. These properties make it superior to existing genetically encodable fluorescent amino acids for monitoring protein interactions and conformational changes through fluorescence polarization or lifetime experiments, including fluorescence lifetime imaging microscopy (FLIM). Here, we report the genetic incorporation of Acd using engineered pyrrolysine tRNA synthetase (RS) mutants that allow for efficient Acd incorporation in both and mammalian cells. We compare protein yields and amino acid specificity for these Acd RSs to identify an optimal construct. We also demonstrate the use of Acd in FLIM, where its long lifetime provides strong contrast compared to endogenous fluorophores and engineered fluorescent proteins, which have lifetimes less than 5 ns.
吖啶基丙氨酸(Acd)是一种荧光氨基酸,具有高度的光稳定性,在水中具有高量子产率和长荧光寿命。这些特性使其优于现有的可遗传编码荧光氨基酸,可通过荧光偏振或寿命实验(包括荧光寿命成像显微镜(FLIM))监测蛋白质相互作用和构象变化。在这里,我们报告了使用工程化的吡咯赖氨酸tRNA合成酶(RS)突变体对Acd进行遗传掺入,该突变体允许在细菌和哺乳动物细胞中高效掺入Acd。我们比较了这些Acd RS的蛋白质产量和氨基酸特异性,以确定最佳构建体。我们还展示了Acd在FLIM中的应用,与寿命小于5 ns的内源性荧光团和工程化荧光蛋白相比,其长寿命提供了强烈的对比度。