Suppr超能文献

LexA 与活化 RecA 相互作用的动力学和分子基础通过荧光氨基酸探针揭示。

The Kinetic and Molecular Basis for the Interaction of LexA and Activated RecA Revealed by a Fluorescent Amino Acid Probe.

机构信息

Graduate Group in Cell and Molecular Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.

Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.

出版信息

ACS Chem Biol. 2020 May 15;15(5):1127-1133. doi: 10.1021/acschembio.9b00886. Epub 2020 Feb 5.

Abstract

The bacterial DNA damage response (the SOS response) is a key pathway involved in antibiotic evasion and a promising target for combating acquired antibiotic resistance. Activation of the SOS response is controlled by two proteins: the repressor LexA and the DNA damage sensor RecA. Following DNA damage, direct interaction between RecA and LexA leads to derepression of the SOS response. However, the exact molecular details of this interaction remain unknown. Here, we employ the fluorescent unnatural amino acid acridonylalanine (Acd) as a minimally perturbing probe of the RecA:LexA complex. Using LexA labeled with Acd, we report the first kinetic model for the reversible binding of LexA to activated RecA. We also characterize the effects that specific amino acid truncations or substitutions in LexA have on RecA:LexA binding strength and demonstrate that a mobile loop encoding LexA residues 75-84 comprises a key recognition interface for RecA. Beyond insights into SOS activation, our approach also further establishes Acd as a sensitive fluorescent probe for investigating the dynamics of protein-protein interactions in other complex systems.

摘要

细菌 DNA 损伤反应(SOS 反应)是参与抗生素逃逸的关键途径,也是对抗获得性抗生素耐药性的有前途的目标。SOS 反应的激活受两种蛋白质控制:抑制剂 LexA 和 DNA 损伤传感器 RecA。在 DNA 损伤后,RecA 和 LexA 之间的直接相互作用导致 SOS 反应的去抑制。然而,这种相互作用的确切分子细节仍然未知。在这里,我们使用荧光非天然氨基酸吖啶基丙氨酸(Acd)作为 RecA:LexA 复合物的最小干扰探针。使用 Acd 标记的 LexA,我们报告了 LexA 与活化的 RecA 可逆结合的第一个动力学模型。我们还描述了 LexA 中特定氨基酸截断或取代对 RecA:LexA 结合强度的影响,并证明编码 LexA 残基 75-84 的可移动环构成了 RecA 的关键识别界面。除了对 SOS 激活的深入了解外,我们的方法还进一步确立了 Acd 作为一种敏感的荧光探针,用于研究其他复杂系统中蛋白质-蛋白质相互作用的动力学。

相似文献

1
The Kinetic and Molecular Basis for the Interaction of LexA and Activated RecA Revealed by a Fluorescent Amino Acid Probe.
ACS Chem Biol. 2020 May 15;15(5):1127-1133. doi: 10.1021/acschembio.9b00886. Epub 2020 Feb 5.
2
The LexA-RecA* structure reveals a cryptic lock-and-key mechanism for SOS activation.
Nat Struct Mol Biol. 2024 Oct;31(10):1522-1531. doi: 10.1038/s41594-024-01317-3. Epub 2024 May 16.
4
Separation of recombination and SOS response in Escherichia coli RecA suggests LexA interaction sites.
PLoS Genet. 2011 Sep;7(9):e1002244. doi: 10.1371/journal.pgen.1002244. Epub 2011 Sep 1.
6
The LexA repressor binds within the deep helical groove of the activated RecA filament.
J Mol Biol. 1993 May 5;231(1):29-40. doi: 10.1006/jmbi.1993.1254.
9
"Activated"-RecA protein affinity chromatography of LexA repressor and other SOS-regulated proteins.
Proc Natl Acad Sci U S A. 1989 Nov;86(21):8363-7. doi: 10.1073/pnas.86.21.8363.
10
LexA protein of cyanobacterium Anabaena sp. strain PCC7120 exhibits in vitro pH-dependent and RecA-independent autoproteolytic activity.
Int J Biochem Cell Biol. 2015 Feb;59:84-93. doi: 10.1016/j.biocel.2014.12.003. Epub 2014 Dec 15.

引用本文的文献

3
Chemical tags and beyond: Live-cell protein labeling technologies for modern optical imaging.
Smart Mol. 2023 Aug 28;1(2):e20230002. doi: 10.1002/smo.20230002. eCollection 2023 Sep.
4
Cooperative mechanisms of LexA and HtpG in the regulation of virulence gene expression in .
Curr Res Microb Sci. 2025 Jan 29;8:100351. doi: 10.1016/j.crmicr.2025.100351. eCollection 2025.
5
Snapshots of SOS response reveal structural requisites for LexA autoproteolysis.
iScience. 2025 Jan 2;28(2):111726. doi: 10.1016/j.isci.2024.111726. eCollection 2025 Feb 21.
6
Noncanonical Amino Acid Tools and Their Application to Membrane Protein Studies.
Chem Rev. 2024 Nov 27;124(22):12498-12550. doi: 10.1021/acs.chemrev.4c00181. Epub 2024 Nov 7.
7
The LexA-RecA* structure reveals a cryptic lock-and-key mechanism for SOS activation.
Nat Struct Mol Biol. 2024 Oct;31(10):1522-1531. doi: 10.1038/s41594-024-01317-3. Epub 2024 May 16.
8
Non-Canonical Amino Acids in Analyses of Protease Structure and Function.
Int J Mol Sci. 2023 Sep 13;24(18):14035. doi: 10.3390/ijms241814035.

本文引用的文献

1
Advancement of the 5-Amino-1-(Carbamoylmethyl)-1H-1,2,3-Triazole-4-Carboxamide Scaffold to Disarm the Bacterial SOS Response.
Front Microbiol. 2018 Dec 18;9:2961. doi: 10.3389/fmicb.2018.02961. eCollection 2018.
2
Systematic Evaluation of Soluble Protein Expression Using a Fluorescent Unnatural Amino Acid Reveals No Reliable Predictors of Tolerability.
ACS Chem Biol. 2018 Oct 19;13(10):2855-2861. doi: 10.1021/acschembio.8b00696. Epub 2018 Sep 20.
3
Non-equilibrium repressor binding kinetics link DNA damage dose to transcriptional timing within the SOS gene network.
PLoS Genet. 2018 Jun 1;14(6):e1007405. doi: 10.1371/journal.pgen.1007405. eCollection 2018 Jun.
4
Inhibitors of LexA Autoproteolysis and the Bacterial SOS Response Discovered by an Academic-Industry Partnership.
ACS Infect Dis. 2018 Mar 9;4(3):349-359. doi: 10.1021/acsinfecdis.7b00122. Epub 2018 Jan 8.
6
Systematically Altering Bacterial SOS Activity under Stress Reveals Therapeutic Strategies for Potentiating Antibiotics.
mSphere. 2016 Aug 10;1(4). doi: 10.1128/mSphere.00163-16. eCollection 2016 Jul-Aug.
7
Targets for Combating the Evolution of Acquired Antibiotic Resistance.
Biochemistry. 2015 Jun 16;54(23):3573-82. doi: 10.1021/acs.biochem.5b00109. Epub 2015 Jun 5.
8
Specificity determinants for autoproteolysis of LexA, a key regulator of bacterial SOS mutagenesis.
Biochemistry. 2014 May 20;53(19):3158-68. doi: 10.1021/bi500026e. Epub 2014 May 8.
10
Structural insight into LexA-RecA* interaction.
Nucleic Acids Res. 2013 Nov;41(21):9901-10. doi: 10.1093/nar/gkt744. Epub 2013 Aug 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验