Graduate Group in Cell and Molecular Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
ACS Chem Biol. 2020 May 15;15(5):1127-1133. doi: 10.1021/acschembio.9b00886. Epub 2020 Feb 5.
The bacterial DNA damage response (the SOS response) is a key pathway involved in antibiotic evasion and a promising target for combating acquired antibiotic resistance. Activation of the SOS response is controlled by two proteins: the repressor LexA and the DNA damage sensor RecA. Following DNA damage, direct interaction between RecA and LexA leads to derepression of the SOS response. However, the exact molecular details of this interaction remain unknown. Here, we employ the fluorescent unnatural amino acid acridonylalanine (Acd) as a minimally perturbing probe of the RecA:LexA complex. Using LexA labeled with Acd, we report the first kinetic model for the reversible binding of LexA to activated RecA. We also characterize the effects that specific amino acid truncations or substitutions in LexA have on RecA:LexA binding strength and demonstrate that a mobile loop encoding LexA residues 75-84 comprises a key recognition interface for RecA. Beyond insights into SOS activation, our approach also further establishes Acd as a sensitive fluorescent probe for investigating the dynamics of protein-protein interactions in other complex systems.
细菌 DNA 损伤反应(SOS 反应)是参与抗生素逃逸的关键途径,也是对抗获得性抗生素耐药性的有前途的目标。SOS 反应的激活受两种蛋白质控制:抑制剂 LexA 和 DNA 损伤传感器 RecA。在 DNA 损伤后,RecA 和 LexA 之间的直接相互作用导致 SOS 反应的去抑制。然而,这种相互作用的确切分子细节仍然未知。在这里,我们使用荧光非天然氨基酸吖啶基丙氨酸(Acd)作为 RecA:LexA 复合物的最小干扰探针。使用 Acd 标记的 LexA,我们报告了 LexA 与活化的 RecA 可逆结合的第一个动力学模型。我们还描述了 LexA 中特定氨基酸截断或取代对 RecA:LexA 结合强度的影响,并证明编码 LexA 残基 75-84 的可移动环构成了 RecA 的关键识别界面。除了对 SOS 激活的深入了解外,我们的方法还进一步确立了 Acd 作为一种敏感的荧光探针,用于研究其他复杂系统中蛋白质-蛋白质相互作用的动力学。