Suppr超能文献

进行性微观结构退化决定了马凡综合征主动脉不断演变的生物力学功能障碍。

Progressive Microstructural Deterioration Dictates Evolving Biomechanical Dysfunction in the Marfan Aorta.

作者信息

Cavinato Cristina, Chen Minghao, Weiss Dar, Ruiz-Rodríguez Maria Jesús, Schwartz Martin A, Humphrey Jay D

机构信息

Department of Biomedical Engineering, Yale University, New Haven, CT, United States.

Cardiovascular Research Center and Department of Internal Medicine (Cardiology), Yale School of Medicine, New Haven, CT, United States.

出版信息

Front Cardiovasc Med. 2021 Dec 16;8:800730. doi: 10.3389/fcvm.2021.800730. eCollection 2021.

Abstract

Medial deterioration leading to thoracic aortic aneurysms arises from multiple causes, chief among them mutations to the gene that encodes fibrillin-1 and leads to Marfan syndrome. Fibrillin-1 microfibrils associate with elastin to form elastic fibers, which are essential structural, functional, and instructional components of the normal aortic wall. Compromised elastic fibers adversely impact overall structural integrity and alter smooth muscle cell phenotype. Despite significant progress in characterizing clinical, histopathological, and mechanical aspects of fibrillin-1 related aortopathies, a direct correlation between the progression of microstructural defects and the associated mechanical properties that dictate aortic functionality remains wanting. In this paper, age-matched wild-type, , and mouse models were selected to represent three stages of increasing severity of the Marfan aortic phenotype. multiphoton imaging and biaxial mechanical testing of the ascending and descending thoracic aorta under physiological loading conditions demonstrated that elastic fiber defects, collagen fiber remodeling, and cell reorganization increase with increasing dilatation. Three-dimensional microstructural characterization further revealed radial patterns of medial degeneration that become more uniform with increasing dilatation while correlating strongly with increased circumferential material stiffness and decreased elastic energy storage, both of which comprise aortic functionality.

摘要

导致胸主动脉瘤的中膜退变由多种原因引起,其中主要原因是编码原纤蛋白-1的基因突变,进而导致马凡综合征。原纤蛋白-1微原纤维与弹性蛋白结合形成弹性纤维,而弹性纤维是正常主动脉壁重要的结构、功能和指导性组成部分。受损的弹性纤维会对整体结构完整性产生不利影响,并改变平滑肌细胞表型。尽管在描述原纤蛋白-1相关主动脉病变的临床、组织病理学和力学方面取得了显著进展,但微观结构缺陷的进展与决定主动脉功能的相关力学性能之间的直接关联仍有待明确。在本文中,选择年龄匹配的野生型、[具体基因敲除型1]和[具体基因敲除型2]小鼠模型来代表马凡主动脉表型严重程度增加的三个阶段。在生理负荷条件下对升主动脉和降主动脉进行多光子成像和双轴力学测试表明,随着扩张程度的增加,弹性纤维缺陷、胶原纤维重塑和细胞重组也会增加。三维微观结构表征进一步揭示了中膜退变的径向模式,随着扩张程度的增加,这种模式变得更加均匀,同时与周向材料刚度增加和弹性能量储存减少密切相关,而这两者都与主动脉功能有关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8f5/8716484/400c5a03a03e/fcvm-08-800730-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验