Deakin University, School of Nursing and Midwifery, 1 Gheringhap Street, Geelong, VIC 3220, Australia; Austin Health, Dept of Cardiology, Studley Rd, Heidelberg, VIC 3081, Australia.
Deakin University, Biostatistics Unit, Faculty of Health, 1 Gheringhap Street, Geelong, VIC 3220, Australia.
Int J Cardiol. 2022 Mar 1;350:69-76. doi: 10.1016/j.ijcard.2021.12.051. Epub 2021 Dec 31.
This study aimed to develop a risk prediction model (AUS-HF model) for 30-day all-cause re-hospitalisation or death among patients admitted with acute heart failure (HF) to inform follow-up after hospitalisation. The model uses routinely collected measures at point of care.
We analyzed pooled individual-level data from two cohort studies on acute HF patients followed for 30-days after discharge in 17 hospitals in Victoria, Australia (2014-2017). A set of 58 candidate predictors, commonly recorded in electronic medical records (EMR) including demographic, medical and social measures were considered. We used backward stepwise selection and LASSO for model development, bootstrap for internal validation, C-statistic for discrimination, and calibration slopes and plots for model calibration.
The analysis included 1380 patients, 42.1% female, median age 78.7 years (interquartile range = 16.2), 60.0% experienced previous hospitalisation for HF and 333 (24.1%) were re-hospitalised or died within 30 days post-discharge. The final risk model included 10 variables (admission: eGFR, and prescription of anticoagulants and thiazide diuretics; discharge: length of stay>3 days, systolic BP, heart rate, sodium level (<135 mmol/L), >10 prescribed medications, prescription of angiotensin converting enzyme inhibitors or angiotensin receptor blockers, and anticoagulants prescription. The discrimination of the model was moderate (C-statistic = 0.684, 95%CI 0.653, 0.716; optimism estimate = 0.062) with good calibration.
The AUS-HF model incorporating routinely collected point-of-care data from EMRs enables real-time risk estimation and can be easily implemented by clinicians. It can predict with moderate accuracy risk of 30-day hospitalisation or mortality and inform decisions around the intensity of follow-up after hospital discharge.
本研究旨在为因急性心力衰竭(HF)住院的患者建立一个 30 天全因再住院或死亡的风险预测模型(AUS-HF 模型),以指导住院后的随访。该模型使用在护理点常规收集的测量值。
我们分析了来自澳大利亚维多利亚州 17 家医院的两项急性 HF 患者队列研究的汇总个体水平数据,这些患者在出院后 30 天内接受随访(2014-2017 年)。我们考虑了一组 58 个候选预测因子,这些预测因子通常记录在电子病历(EMR)中,包括人口统计学、医学和社会措施。我们使用向后逐步选择和 LASSO 进行模型开发,使用 bootstrap 进行内部验证,使用 C 统计量进行区分,使用校准斜率和图进行模型校准。
该分析共纳入 1380 例患者,42.1%为女性,中位年龄为 78.7 岁(四分位距=16.2),60.0%有既往 HF 住院史,333 例(24.1%)在出院后 30 天内再次住院或死亡。最终的风险模型包括 10 个变量(入院时:eGFR 以及抗凝剂和噻嗪类利尿剂的处方;出院时:住院时间>3 天、收缩压、心率、钠水平(<135mmol/L)、>10 种处方药物、血管紧张素转换酶抑制剂或血管紧张素受体阻滞剂的处方以及抗凝剂的处方)。该模型的区分度中等(C 统计量为 0.684,95%CI 为 0.653,0.716;乐观估计值为 0.062),校准良好。
该模型纳入了来自 EMR 的常规护理点数据,能够实时进行风险估计,并且易于临床医生实施。它可以以中等的准确性预测 30 天住院或死亡的风险,并为出院后随访的强度提供决策依据。