Ophthalmic Surg Lasers Imaging Retina. 2022 Jan;53(1):31-39. doi: 10.3928/23258160-20211210-01. Epub 2022 Jan 1.
To evaluate the utility of spectral-domain optical coherence tomography biomarkers to predict the development of subfoveal geographic atrophy (sfGA).
This was a retrospective cohort analysis including 137 individuals with dry age-related macular degeneration without sfGA with 5 years of follow-up. Multiple spectral-domain optical coherence tomography quantitative metrics were generated, including ellipsoid zone (EZ) integrity and subretinal pigment epithelium (sub-RPE) compartment features.
Reduced mean EZ-RPE central subfield thickness and increased sub-RPE compartment thickness were significantly different between sfGA convertors and nonconvertors at baseline in both 2-year and 5-year sfGA risk assessment. Longitudinal change assessment showed a significantly higher degradation of EZ integrity in sfGA convertors. The predictive performance of a machine learning classification model based on 5-year and 2-year risk conversion to sfGA demonstrated an area under the receiver operating characteristic curve of 0.92 ± 0.06 and 0.96 ± 0.04, respectively.
Quantitative outer retinal and sub-RPE feature assessment using a machine learning-enabled retinal segmentation platform provides multiple parameters that are associated with progression to sfGA. .
评估频域光相干断层扫描生物标志物预测中心凹下地图状萎缩(sfGA)发展的效用。
这是一项回顾性队列分析,纳入了 137 名无 sfGA 的干性年龄相关性黄斑变性患者,随访时间为 5 年。生成了多个频域光相干断层扫描定量指标,包括椭圆体带(EZ)完整性和视网膜下色素上皮(sub-RPE)区特点。
在 2 年和 5 年 sfGA 风险评估中,基线时 sfGA 转化者与非转化者的平均 EZ-RPE 中央子场厚度减少和 sub-RPE 区厚度增加均有显著差异。纵向变化评估显示,sfGA 转化者的 EZ 完整性明显下降。基于 5 年和 2 年风险向 sfGA 转化的机器学习分类模型的预测性能,ROC 曲线下面积分别为 0.92±0.06 和 0.96±0.04。
使用基于机器学习的视网膜分割平台进行外视网膜和 sub-RPE 定量特征评估,提供了多个与向 sfGA 进展相关的参数。