Suppr超能文献

利用机器学习驱动的外视网膜特征提取对干性年龄相关性黄斑变性进展为中心凹下地理萎缩的风险分类。

Risk Classification for Progression to Subfoveal Geographic Atrophy in Dry Age-Related Macular Degeneration Using Machine Learning-Enabled Outer Retinal Feature Extraction.

出版信息

Ophthalmic Surg Lasers Imaging Retina. 2022 Jan;53(1):31-39. doi: 10.3928/23258160-20211210-01. Epub 2022 Jan 1.

Abstract

BACKGROUND AND OBJECTIVE

To evaluate the utility of spectral-domain optical coherence tomography biomarkers to predict the development of subfoveal geographic atrophy (sfGA).

PATIENTS AND METHODS

This was a retrospective cohort analysis including 137 individuals with dry age-related macular degeneration without sfGA with 5 years of follow-up. Multiple spectral-domain optical coherence tomography quantitative metrics were generated, including ellipsoid zone (EZ) integrity and subretinal pigment epithelium (sub-RPE) compartment features.

RESULTS

Reduced mean EZ-RPE central subfield thickness and increased sub-RPE compartment thickness were significantly different between sfGA convertors and nonconvertors at baseline in both 2-year and 5-year sfGA risk assessment. Longitudinal change assessment showed a significantly higher degradation of EZ integrity in sfGA convertors. The predictive performance of a machine learning classification model based on 5-year and 2-year risk conversion to sfGA demonstrated an area under the receiver operating characteristic curve of 0.92 ± 0.06 and 0.96 ± 0.04, respectively.

CONCLUSIONS

Quantitative outer retinal and sub-RPE feature assessment using a machine learning-enabled retinal segmentation platform provides multiple parameters that are associated with progression to sfGA. .

摘要

背景与目的

评估频域光相干断层扫描生物标志物预测中心凹下地图状萎缩(sfGA)发展的效用。

患者与方法

这是一项回顾性队列分析,纳入了 137 名无 sfGA 的干性年龄相关性黄斑变性患者,随访时间为 5 年。生成了多个频域光相干断层扫描定量指标,包括椭圆体带(EZ)完整性和视网膜下色素上皮(sub-RPE)区特点。

结果

在 2 年和 5 年 sfGA 风险评估中,基线时 sfGA 转化者与非转化者的平均 EZ-RPE 中央子场厚度减少和 sub-RPE 区厚度增加均有显著差异。纵向变化评估显示,sfGA 转化者的 EZ 完整性明显下降。基于 5 年和 2 年风险向 sfGA 转化的机器学习分类模型的预测性能,ROC 曲线下面积分别为 0.92±0.06 和 0.96±0.04。

结论

使用基于机器学习的视网膜分割平台进行外视网膜和 sub-RPE 定量特征评估,提供了多个与向 sfGA 进展相关的参数。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验