Hu Min, Wu Bin, Lu Di, Xie Jing, Chen Yiqiang, Yang Zhikuan, Dai Weiwei
Changsha Aier Eye Hospital, Changsha, China.
Department of Retina, Shenyang Aier Excellence Eye Hospital, Shenyang, China.
Front Med (Lausanne). 2023 Jul 19;10:1221453. doi: 10.3389/fmed.2023.1221453. eCollection 2023.
The aim of this study is to apply deep learning techniques for the development and validation of a system that categorizes various phases of dry age-related macular degeneration (AMD), including nascent geographic atrophy (nGA), through the analysis of optical coherence tomography (OCT) images.
A total of 3,401 OCT macular images obtained from 338 patients admitted to Shenyang Aier Eye Hospital in 2019-2021 were collected for the development of the classification model. We adopted a convolutional neural network (CNN) model and introduced hierarchical structure along with image enhancement techniques to train a two-step CNN model to detect and classify normal and three phases of dry AMD: atrophy-associated drusen regression, nGA, and geographic atrophy (GA). Five-fold cross-validation was used to evaluate the performance of the multi-label classification model.
Experimental results obtained from five-fold cross-validation with different dry AMD classification models show that the proposed two-step hierarchical model with image enhancement achieves the best classification performance, with a f1-score of 91.32% and a kappa coefficients of 96.09% compared to the state-of-the-art models. The results obtained from the ablation study demonstrate that the proposed method not only improves accuracy across all categories in comparison to a traditional flat CNN model, but also substantially enhances the classification performance of nGA, with an improvement from 66.79 to 81.65%.
This study introduces a novel two-step hierarchical deep learning approach in categorizing dry AMD progression phases, and demonstrates its efficacy. The high classification performance suggests its potential for guiding individualized treatment plans for patients with macular degeneration.
本研究旨在应用深度学习技术开发并验证一个通过分析光学相干断层扫描(OCT)图像对干性年龄相关性黄斑变性(AMD)的各个阶段进行分类的系统,包括新生地理萎缩(nGA)。
收集了2019年至2021年在沈阳爱尔眼科医院就诊的338例患者的3401张OCT黄斑图像用于分类模型的开发。我们采用卷积神经网络(CNN)模型,并引入层次结构以及图像增强技术来训练一个两步CNN模型,以检测和分类正常以及干性AMD的三个阶段:萎缩相关玻璃膜疣消退期、nGA和地理萎缩(GA)。采用五折交叉验证来评估多标签分类模型的性能。
使用不同干性AMD分类模型进行五折交叉验证得到的实验结果表明,所提出的具有图像增强的两步层次模型实现了最佳分类性能,与现有模型相比,F1分数为91.32%,kappa系数为96.09%。消融研究的结果表明,所提出的方法不仅与传统的平面CNN模型相比提高了所有类别的准确率,而且还显著提高了nGA的分类性能,从66.79%提高到81.65%。
本研究引入了一种新颖的两步层次深度学习方法来对干性AMD进展阶段进行分类,并证明了其有效性。高分类性能表明其在指导黄斑变性患者个体化治疗方案方面的潜力。