Department of Psychological and Quantitative Foundations, University of Iowa, Iowa City, Iowa 52242, USA; email:
Department of Clinical Research, Creighton University, Omaha, Nebraska 68178, USA.
Annu Rev Psychol. 2022 Jan 4;73:659-689. doi: 10.1146/annurev-psych-020821-103525.
This review focuses on the use of multilevel models in psychology and other social sciences. We target readers who are catching up on current best practices and sources of controversy in the specification of multilevel models. We first describe common use cases for clustered, longitudinal, and cross-classified designs, as well as their combinations. Using examples from both clustered and longitudinal designs, we then address issues of centering for observed predictor variables: its use in creating interpretable fixed and random effects of predictors, its relationship to endogeneity problems (correlations between predictors and model error terms), and its translation into multivariate multilevel models (using latent-centering within multilevel structural equation models). Finally, we describe novel extensions-mixed-effects location-scale models-designed for predicting differential amounts of variability.
这篇综述聚焦于多层次模型在心理学和其他社会科学中的应用。我们的目标读者是那些想要了解多层次模型规范方面最新最佳实践和争议来源的人。我们首先描述了聚类、纵向和交叉分类设计以及它们的组合的常见用例。然后,我们使用来自聚类和纵向设计的示例来解决观测预测变量的中心化问题:它在创建可解释的预测变量固定和随机效应中的使用、它与内生性问题(预测变量与模型误差项之间的相关性)的关系,以及它在多元多层次模型中的转化(使用多层次结构方程模型中的潜在中心化)。最后,我们描述了旨在预测不同程度可变性的新扩展——混合效应位置-尺度模型。