Department of Biochemistry, Albert Einstein College of Medicine, Bronx, United States.
Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, United States.
Elife. 2022 Jan 5;11:e72867. doi: 10.7554/eLife.72867.
Protein arginine methyltransferases (PRMTs) are required for the regulation of RNA processing factors. Type I PRMT enzymes catalyze mono- and asymmetric dimethylation; Type II enzymes catalyze mono- and symmetric dimethylation. To understand the specific mechanisms of PRMT activity in splicing regulation, we inhibited Type I and II PRMTs and probed their transcriptomic consequences. Using the newly developed Splicing Kinetics and Transcript Elongation Rates by Sequencing (SKaTER-seq) method, analysis of co-transcriptional splicing demonstrated that PRMT inhibition resulted in altered splicing rates. Surprisingly, co-transcriptional splicing kinetics did not correlate with final changes in splicing of polyadenylated RNA. This was particularly true for retained introns (RI). By using actinomycin D to inhibit ongoing transcription, we determined that PRMTs post-transcriptionally regulate RI. Subsequent proteomic analysis of both PRMT-inhibited chromatin and chromatin-associated polyadenylated RNA identified altered binding of many proteins, including the Type I substrate, CHTOP, and the Type II substrate, SmB. Targeted mutagenesis of all methylarginine sites in SmD3, SmB, and SmD1 recapitulated splicing changes seen with Type II PRMT inhibition, without disrupting snRNP assembly. Similarly, mutagenesis of all methylarginine sites in CHTOP recapitulated the splicing changes seen with Type I PRMT inhibition. Examination of subcellular fractions further revealed that RI were enriched in the nucleoplasm and chromatin. Taken together, these data demonstrate that, through Sm and CHTOP arginine methylation, PRMTs regulate the post-transcriptional processing of nuclear, detained introns.
蛋白质精氨酸甲基转移酶(PRMTs)是调节 RNA 加工因子所必需的。I 型 PRMT 酶催化单甲基化和不对称二甲基化;II 型酶催化单甲基化和对称二甲基化。为了了解 PRMT 活性在剪接调控中的特定机制,我们抑制了 I 型和 II 型 PRMT,并探究了它们的转录组后果。使用新开发的剪接动力学和转录延伸率测序(SKaTER-seq)方法,共转录剪接分析表明 PRMT 抑制导致剪接率改变。令人惊讶的是,共转录剪接动力学与多聚腺苷酸化 RNA 最终剪接变化没有相关性。这对于保留内含子(RI)尤其如此。通过使用放线菌素 D 抑制正在进行的转录,我们确定 PRMTs 在后转录水平上调节 RI。随后对 PRMT 抑制的染色质和染色质相关多聚腺苷酸化 RNA 的蛋白质组分析表明,许多蛋白质的结合发生改变,包括 I 型底物 CHTOP 和 II 型底物 SmB。SmD3、SmB 和 SmD1 中所有精氨酸甲基化位点的靶向突变复制了 II 型 PRMT 抑制所观察到的剪接变化,而不会破坏 snRNP 组装。同样,SmD3、SmB 和 SmD1 中所有精氨酸甲基化位点的突变复制了 I 型 PRMT 抑制所观察到的剪接变化。对亚细胞部分的进一步检查进一步表明,RI 富集于核质和染色质中。总的来说,这些数据表明,通过 Sm 和 CHTOP 精氨酸甲基化,PRMTs 调节细胞核内、滞留内含子的转录后加工。