Suppr超能文献

DMA 结构域 Tudor 相互作用模块控制体内凝聚物的特异性。

DMA-tudor interaction modules control the specificity of in vivo condensates.

机构信息

Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.

Cell Biology, Yale University, New Haven, CT 06520, USA; Biomedical Engineering, Yale University, New Haven, CT 06520, USA.

出版信息

Cell. 2021 Jul 8;184(14):3612-3625.e17. doi: 10.1016/j.cell.2021.05.008. Epub 2021 Jun 10.

Abstract

Biomolecular condensation is a widespread mechanism of cellular compartmentalization. Because the "survival of motor neuron protein" (SMN) is implicated in the formation of three different membraneless organelles (MLOs), we hypothesized that SMN promotes condensation. Unexpectedly, we found that SMN's globular tudor domain was sufficient for dimerization-induced condensation in vivo, whereas its two intrinsically disordered regions (IDRs) were not. Binding to dimethylarginine (DMA) modified protein ligands was required for condensate formation by the tudor domains in SMN and at least seven other fly and human proteins. Remarkably, asymmetric versus symmetric DMA determined whether two distinct nuclear MLOs-gems and Cajal bodies-were separate or "docked" to one another. This substructure depended on the presence of either asymmetric or symmetric DMA as visualized with sub-diffraction microscopy. Thus, DMA-tudor interaction modules-combinations of tudor domains bound to their DMA ligand(s)-represent versatile yet specific regulators of MLO assembly, composition, and morphology.

摘要

生物分子凝聚是一种广泛存在的细胞区室化机制。由于“运动神经元存活蛋白”(SMN)与三种不同的无膜细胞器(MLO)的形成有关,我们假设 SMN 促进凝聚。出乎意料的是,我们发现 SMN 的球形 tudor 结构域足以在体内诱导二聚体诱导的凝聚,而其两个固有无序区(IDR)则不行。tudor 结构域在 SMN 以及至少七种其他果蝇和人类蛋白中与二甲基精氨酸(DMA)修饰的蛋白配体结合是形成凝聚体所必需的。值得注意的是,不对称与对称的 DMA 决定了两个不同的核 MLO-核仁与 Cajal 体-是否彼此分离或“对接”。这种亚结构取决于使用亚衍射显微镜观察到的不对称或对称 DMA 的存在。因此,DMA-tudor 相互作用模块(结合了其 DMA 配体的 tudor 结构域的组合)代表了 MLO 组装、组成和形态的多功能但特异性的调节剂。

相似文献

1
DMA-tudor interaction modules control the specificity of in vivo condensates.
Cell. 2021 Jul 8;184(14):3612-3625.e17. doi: 10.1016/j.cell.2021.05.008. Epub 2021 Jun 10.
2
Structural basis for dimethylarginine recognition by the Tudor domains of human SMN and SPF30 proteins.
Nat Struct Mol Biol. 2011 Nov 20;18(12):1414-20. doi: 10.1038/nsmb.2185.
3
Tudor-dimethylarginine interactions: the condensed version.
Trends Biochem Sci. 2023 Aug;48(8):689-698. doi: 10.1016/j.tibs.2023.04.003. Epub 2023 May 6.
6
Distinct domains of the spinal muscular atrophy protein SMN are required for targeting to Cajal bodies in mammalian cells.
J Cell Sci. 2006 Feb 15;119(Pt 4):680-92. doi: 10.1242/jcs.02782. Epub 2006 Jan 31.
7
The catalytically inactive tyrosine phosphatase HD-PTP/PTPN23 is a novel regulator of SMN complex localization.
Mol Biol Cell. 2015 Jan 15;26(2):161-71. doi: 10.1091/mbc.E14-06-1151. Epub 2014 Nov 12.
8
The SMN Tudor SIM-like domain is key to SmD1 and coilin interactions and to Cajal body biogenesis.
J Cell Sci. 2014 Mar 1;127(Pt 5):939-46. doi: 10.1242/jcs.138537. Epub 2014 Jan 10.
10
The Ewing's sarcoma protein interacts with the Tudor domain of the survival motor neuron protein.
Brain Res Mol Brain Res. 2003 Nov 6;119(1):37-49. doi: 10.1016/j.molbrainres.2003.08.011.

引用本文的文献

1
The U1 snRNP-specific protein U1C is a key regulator of SMN complex-mediated snRNP formation.
J Biol Chem. 2025 Jul 22;301(9):110514. doi: 10.1016/j.jbc.2025.110514.
2
Multiple domains of scaffold Tudor protein play nonredundant roles in germline.
Life Sci Alliance. 2025 Jul 14;8(10). doi: 10.26508/lsa.202503304. Print 2025 Oct.
3
Focal adhesion-derived liquid-liquid phase separations regulate mRNA translation.
Elife. 2025 Jun 26;13:RP96157. doi: 10.7554/eLife.96157.
4
Multiple domains of scaffold Tudor protein play non-redundant roles in germline.
bioRxiv. 2025 Mar 17:2025.03.13.643173. doi: 10.1101/2025.03.13.643173.
5
Whole-transcriptome sequencing in neural and non-neural tissues of a mouse model identifies miR-34a as a key regulator in SMA pathogenesis.
Mol Ther Nucleic Acids. 2025 Feb 20;36(2):102490. doi: 10.1016/j.omtn.2025.102490. eCollection 2025 Jun 10.
6
Programming biological communication between distinct membraneless compartments.
Nat Chem Biol. 2025 Feb 5. doi: 10.1038/s41589-025-01840-4.
7
Epigenetic Regulation Via Electrical Forces.
Rev Physiol Biochem Pharmacol. 2025;187:251-272. doi: 10.1007/978-3-031-68827-0_15.
8
piRNA processing within non-membrane structures is governed by constituent proteins and their functional motifs.
FEBS J. 2025 Jun;292(11):2715-2736. doi: 10.1111/febs.17360. Epub 2024 Dec 30.
9
Identification of coilin interactors reveals coordinated control of Cajal body number and structure.
J Cell Biol. 2025 Feb 3;224(2). doi: 10.1083/jcb.202305081. Epub 2024 Nov 27.
10
Stress granules and organelles: coordinating cellular responses in health and disease.
Protein Cell. 2025 Jun 20;16(6):418-438. doi: 10.1093/procel/pwae057.

本文引用的文献

1
Three-dimensional adaptive optical nanoscopy for thick specimen imaging at sub-50-nm resolution.
Nat Methods. 2021 Jun;18(6):688-693. doi: 10.1038/s41592-021-01149-9. Epub 2021 May 31.
2
Ligand effects on phase separation of multivalent macromolecules.
Proc Natl Acad Sci U S A. 2021 Mar 9;118(10). doi: 10.1073/pnas.2017184118.
3
Splicing at the phase-separated nuclear speckle interface: a model.
Nucleic Acids Res. 2021 Jan 25;49(2):636-645. doi: 10.1093/nar/gkaa1209.
4
Nuclear mechanisms of gene expression control: pre-mRNA splicing as a life or death decision.
Curr Opin Genet Dev. 2021 Apr;67:67-76. doi: 10.1016/j.gde.2020.11.002. Epub 2020 Dec 5.
5
A framework for understanding the functions of biomolecular condensates across scales.
Nat Rev Mol Cell Biol. 2021 Mar;22(3):215-235. doi: 10.1038/s41580-020-00303-z. Epub 2020 Nov 9.
6
RNP Granule Formation: Lessons from P-Bodies and Stress Granules.
Cold Spring Harb Symp Quant Biol. 2019;84:203-215. doi: 10.1101/sqb.2019.84.040329. Epub 2020 Jun 1.
7
8
Competing Protein-RNA Interaction Networks Control Multiphase Intracellular Organization.
Cell. 2020 Apr 16;181(2):306-324.e28. doi: 10.1016/j.cell.2020.03.050.
9
Physical Principles Underlying the Complex Biology of Intracellular Phase Transitions.
Annu Rev Biophys. 2020 May 6;49:107-133. doi: 10.1146/annurev-biophys-121219-081629. Epub 2020 Jan 31.
10
The liquid nucleome - phase transitions in the nucleus at a glance.
J Cell Sci. 2019 Nov 21;132(22):jcs235093. doi: 10.1242/jcs.235093.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验