Department of Chemical & Biological Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
Department of Chemical Engineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
ACS Appl Mater Interfaces. 2022 Jan 19;14(2):2893-2907. doi: 10.1021/acsami.1c21277. Epub 2022 Jan 5.
Biogas is an environmentally friendly and sustainable energy resource that can substitute or complement conventional fossil fuels. For practical uses, biogas upgrading, mainly through the effective separation of CO (0.33 nm) and CH (0.38 nm), is required to meet the approximately 90-95% purity of CH, while CO should be concomitantly purified. In this study, a high CO perm-selective zeolite membrane was synthesized by heteroepitaxially growing a chabazite (CHA) zeolite seed layer with a synthetic precursor that allowed the formation of all-silica deca-dodecasil 3 rhombohedral (DDR) zeolite (with a pore size of 0.36 × 0.44 nm). The resulting hydrophobic DDR@CHA hybrid membrane on an asymmetric α-AlO tube was thin (ca. 2 μm) and continuous, thus providing both high flux and permselectivity for CO irrespective of the presence or absence of water vapor (the third largest component in the biogas streams). To the best of our knowledge, the CO permeance of (2.9 ± 0.3) × 10 mol m s Pa and CO/CH separation factor of ca. 274 ± 73 at a saturated water vapor partial pressure of ca. 12 kPa at 50 °C have the highest CO/CH separation performance yet achieved. Furthermore, we explored the membrane module properties of the hybrid membrane in terms of the recovery and purity of both CO and CH under dry and wet conditions. Despite the high intrinsic membrane properties of the current hybrid membrane, reflected by the high permeance and SF, the corresponding module properties indicated that high-performance separation of CO and CH for the desired biogas upgrading was achieved at a limited processing capacity. This supports the importance of understanding the correlation between the membrane and module properties, as this will provide guidance for the optimal operating conditions.
沼气是一种环保且可持续的能源资源,可替代或补充传统的化石燃料。为了实际应用,需要对沼气进行升级,主要是通过有效分离 CO(0.33nm)和 CH(0.38nm),以达到 CH 的纯度约为 90-95%,同时 CO 也应同时得到纯化。在这项研究中,通过使用一种合成前体异质外延生长 CHA 沸石种子层,合成了一种具有高 CO 选择渗透性的沸石膜,该前体允许形成全硅十氢十二硅 3 菱形(DDR)沸石(孔尺寸为 0.36×0.44nm)。在非对称α-AlO 管上形成的疏水性 DDR@CHA 混合膜很薄(约 2μm)且连续,因此无论是否存在水蒸气(沼气流中的第三大成分),均可提供高的通量和 CO 选择渗透性。据我们所知,在约 50°C 时,在饱和水蒸气分压约为 12kPa 的条件下,CO 的渗透系数为(2.9±0.3)×10-7mol·m-2·s-1·Pa-1,CO/CH 分离因子约为 274±73,这是迄今为止实现的最高 CO/CH 分离性能。此外,我们还探索了混合膜在干燥和潮湿条件下,对 CO 和 CH 的回收率和纯度的膜组件性能。尽管当前混合膜具有较高的内在膜性能,反映在较高的渗透系数和 SF 上,但相应的模块性能表明,在有限的处理能力下,实现了所需的沼气升级中 CO 和 CH 的高性能分离。这支持了理解膜和模块性能之间相关性的重要性,因为这将为优化操作条件提供指导。