Suppr超能文献

了解 prestin 电动活动结构机制的研究进展。

Progress in understanding the structural mechanism underlying prestin's electromotile activity.

机构信息

Institute for Physiology and Pathophysiology, Philipps University Marburg, Deutschhausstr. 2, Marburg 35037, Germany.

Institute for Physiology and Pathophysiology, Philipps University Marburg, Deutschhausstr. 2, Marburg 35037, Germany; DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps University Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Giessen, Germany.

出版信息

Hear Res. 2022 Sep 15;423:108423. doi: 10.1016/j.heares.2021.108423. Epub 2021 Dec 24.

Abstract

Prestin (SLC26A5), a member of the SLC26 transporter family, is the molecular actuator that drives OHC electromotility (eM). A wealth of biophysical data indicates that eM is mediated by an area motor mechanism, in which prestin molecules act as elementary actuators by changing their area in the membrane in response to changes in membrane potential. The area changes of a large and densely packed population of prestin molecules sum up, resulting in macroscopic cellular movement. At the single protein level, this model implies major voltage-driven conformational rearrangements. However, the nature of these structural dynamics remained unknown. A main obstacle in elucidating the eM mechanism has been the lack of structural information about SLC26 transporters. The recent emergence of several high-resolution cryo-EM structures of prestin as well as other SLC26 transporter family members now provides a reliable picture of prestin's molecular architecture. Thus, SLC26 transporters including prestin generally are dimers, and each protomer is folded according to a 7+7 transmembrane domain inverted repeat (7TMIR) architecture. Here, we review these structural findings and discuss insights into a potential molecular mechanism. Most important, distinct conformations were observed when purifying and imaging prestin bound to either its physiological ligand, chloride, or to competitively inhibitory anions, sulfate or salicylate. Despite differences in detail, these structural snapshots indicate that the conformational landscape of prestin includes rearrangements between the two major domains of prestin's transmembrane region (TMD), core and scaffold ('gate') domains. Notably, distinct conformations differ in the area the TMD occupies in the membrane and in their impact on the immediate lipid environment. Both effects can contribute to generate membrane deformation and thus may underly electromotility. Further functional studies will be necessary to determine whether these or similar structural rearrangements are driven by membrane potential to mediate piezoelectric activity. This article is part of the Special Issue Outer hair cell Edited by Joseph Santos-Sacchi and Kumar Navaratnam.

摘要

prestin(SLC26A5)是 SLC26 转运蛋白家族的成员,是驱动 OHC 电活动(eM)的分子驱动器。大量的生物物理数据表明,eM 是通过一种区域运动机制介导的,在该机制中, prestin 分子通过响应膜电位变化改变其在膜中的面积来充当基本的驱动器。大量密集包装的 prestin 分子的面积变化加起来,导致宏观细胞运动。在单个蛋白质水平上,该模型意味着主要的电压驱动构象重排。然而,这些结构动力学的性质仍然未知。阐明 eM 机制的一个主要障碍一直是缺乏关于 SLC26 转运蛋白的结构信息。最近,出现了几个 prestin 以及其他 SLC26 转运蛋白家族成员的高分辨率冷冻电镜结构,现在提供了 prestin 分子结构的可靠图像。因此,包括 prestin 在内的 SLC26 转运蛋白通常是二聚体,每个原体根据 7+7 跨膜域倒重复(7TMIR)结构折叠。在这里,我们回顾这些结构发现,并讨论对潜在分子机制的见解。最重要的是,当纯化并成像与生理配体氯或竞争性抑制阴离子硫酸盐或水杨酸盐结合的 prestin 时,观察到不同的构象。尽管细节上存在差异,但这些结构快照表明,prestin 的构象景观包括 prestin 的跨膜区(TMD)的两个主要结构域之间的重排,核心和支架(“门”)结构域。值得注意的是,不同的构象在 TMD 在膜中占据的区域及其对紧邻脂质环境的影响方面存在差异。这两种效应都可以有助于产生膜变形,从而可能是电活动的基础。需要进一步的功能研究来确定这些或类似的结构重排是否由膜电位驱动以介导压电活性。本文是由 Joseph Santos-Sacchi 和 Kumar Navaratnam 编辑的《外毛细胞特刊》的一部分。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验