Suppr超能文献

普雷斯汀阴离子结合位点的折叠与外毛细胞电运动机制

Folding of Prestin's Anion-Binding Site and the Mechanism of Outer Hair Cell Electromotility.

作者信息

Lin Xiaoxuan, Haller Patrick, Bavi Navid, Faruk Nabil, Perozo Eduardo, Sosnick Tobin R

出版信息

bioRxiv. 2023 Oct 1:2023.02.27.530320. doi: 10.1101/2023.02.27.530320.

Abstract

Prestin responds to transmembrane voltage fluctuations by changing its cross-sectional area, a process underlying the electromotility of outer hair cells and cochlear amplification. Prestin belongs to the SLC26 family of anion transporters yet is the only member capable of displaying electromotility. Prestin's voltage-dependent conformational changes are driven by the putative displacement of residue R399 and a set of sparse charged residues within the transmembrane domain, following the binding of a Cl anion at a conserved binding site formed by amino termini of the TM3 and TM10 helices. However, a major conundrum arises as to how an anion that binds in proximity to a positive charge (R399), can promote the voltage sensitivity of prestin. Using hydrogen-deuterium exchange mass spectrometry, we find that prestin displays an unstable anion-binding site, where folding of the amino termini of TM3 and TM10 is coupled to Cl binding. This event shortens the TM3-TM10 electrostatic gap, thereby connecting the two helices, resulting in reduced cross-sectional area. These folding events upon anion-binding are absent in SLC26A9, a non-electromotile transporter closely related to prestin. Dynamics of prestin embedded in a lipid bilayer closely match that in detergent micelle, except for a destabilized lipid-facing helix TM6 that is critical to prestin's mechanical expansion. We observe helix fraying at prestin's anion-binding site but cooperative unfolding of multiple lipid-facing helices, features that may promote prestin's fast electromechanical rearrangements. These results highlight a novel role of the folding equilibrium of the anion-binding site, and helps define prestin's unique voltage-sensing mechanism and electromotility.

摘要

Prestin通过改变其横截面积来响应跨膜电压波动,这一过程是外毛细胞电运动性和耳蜗放大的基础。Prestin属于阴离子转运体的SLC26家族,但却是唯一能够表现出电运动性的成员。Prestin的电压依赖性构象变化是由残基R399以及跨膜结构域内一组稀疏的带电残基的假定位移驱动的,这是在氯离子结合到由TM3和TM10螺旋的氨基末端形成的保守结合位点之后发生的。然而,一个主要的难题出现了,即结合在正电荷(R399)附近的阴离子如何能够促进Prestin的电压敏感性。使用氢-氘交换质谱法,我们发现Prestin表现出一个不稳定的阴离子结合位点,其中TM3和TM10的氨基末端折叠与氯离子结合相关联。这一事件缩短了TM3-TM10静电间隙,从而连接了两个螺旋,导致横截面积减小。在与Prestin密切相关的非电运动性转运体SLC26A9中,阴离子结合时不会发生这些折叠事件。嵌入脂质双层中的Prestin的动力学与去污剂胶束中的动力学密切匹配,除了对Prestin的机械扩张至关重要的面向脂质的螺旋TM6不稳定。我们观察到Prestin阴离子结合位点处的螺旋磨损,但多个面向脂质的螺旋协同展开,这些特征可能促进Prestin快速的机电重排。这些结果突出了阴离子结合位点折叠平衡的新作用,并有助于定义Prestin独特的电压传感机制和电运动性。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验