Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY, USA.
Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA.
Nature. 2022 Jan;601(7894):606-611. doi: 10.1038/s41586-021-04264-x. Epub 2022 Jan 5.
Gram-negative bacteria are responsible for an increasing number of deaths caused by antibiotic-resistant infections. The bacterial natural product colistin is considered the last line of defence against a number of Gram-negative pathogens. The recent global spread of the plasmid-borne mobilized colistin-resistance gene mcr-1 (phosphoethanolamine transferase) threatens the usefulness of colistin. Bacteria-derived antibiotics often appear in nature as collections of similar structures that are encoded by evolutionarily related biosynthetic gene clusters. This structural diversity is, at least in part, expected to be a response to the development of natural resistance, which often mechanistically mimics clinical resistance. Here we propose that a solution to mcr-1-mediated resistance might have evolved among naturally occurring colistin congeners. Bioinformatic analysis of sequenced bacterial genomes identified a biosynthetic gene cluster that was predicted to encode a structurally divergent colistin congener. Chemical synthesis of this structure produced macolacin, which is active against Gram-negative pathogens expressing mcr-1 and intrinsically resistant pathogens with chromosomally encoded phosphoethanolamine transferase genes. These Gram-negative bacteria include extensively drug-resistant Acinetobacter baumannii and intrinsically colistin-resistant Neisseria gonorrhoeae, which, owing to a lack of effective treatment options, are considered among the highest level threat pathogens. In a mouse neutropenic infection model, a biphenyl analogue of macolacin proved to be effective against extensively drug-resistant A. baumannii with colistin-resistance, thus providing a naturally inspired and easily produced therapeutic lead for overcoming colistin-resistant pathogens.
革兰氏阴性菌是导致抗生素耐药性感染死亡人数不断增加的罪魁祸首。细菌天然产物多粘菌素被认为是对抗多种革兰氏阴性病原体的最后一道防线。最近质粒携带的可移动多粘菌素耐药基因 mcr-1(磷酸乙醇胺转移酶)在全球范围内的传播,威胁到多粘菌素的有效性。细菌来源的抗生素通常在自然界中以相似结构的集合形式出现,这些结构由进化上相关的生物合成基因簇编码。这种结构多样性至少部分是对天然耐药性发展的一种反应,而天然耐药性往往在机制上模拟临床耐药性。在这里,我们提出,mcr-1 介导的耐药性的解决方案可能在天然存在的多粘菌素同系物中进化而来。对测序细菌基因组的生物信息学分析确定了一个生物合成基因簇,该基因簇预测编码一种结构上不同的多粘菌素同系物。该结构的化学合成产生了 macolacin,它对表达 mcr-1 的革兰氏阴性病原体和具有染色体编码磷酸乙醇胺转移酶基因的固有耐药性病原体都具有活性。这些革兰氏阴性细菌包括广泛耐药的鲍曼不动杆菌和固有耐药的淋病奈瑟菌,由于缺乏有效的治疗选择,它们被认为是最高级别的威胁病原体。在中性粒细胞减少症小鼠感染模型中,macolacin 的联苯类似物被证明对具有多粘菌素耐药性的广泛耐药性鲍曼不动杆菌有效,从而为克服多粘菌素耐药性病原体提供了一种自然灵感和易于生产的治疗性先导化合物。