Suppr超能文献

基于混合机器学习算法的作物产量预测智能决策支持系统。

An intelligent decision support system for crop yield prediction using hybrid machine learning algorithms.

机构信息

Faculty of Information Science Technology, Multimedia University, Bukit Beruang, Melaka, 75450, Malaysia.

Department of Information Technology,, Thiagarajar College of Engineering, Madurai, Tamil Nadu, India.

出版信息

F1000Res. 2021 Nov 11;10:1143. doi: 10.12688/f1000research.73009.1. eCollection 2021.

Abstract

: In recent times, digitization is gaining importance in different domains of knowledge such as agriculture, medicine, recommendation platforms, the Internet of Things (IoT), and weather forecasting. In agriculture, crop yield estimation is essential for improving productivity and decision-making processes such as financial market forecasting, and addressing food security issues. The main objective of the article is to predict and improve the accuracy of crop yield forecasting using hybrid machine learning (ML) algorithms. This article proposes hybrid ML algorithms that use specialized ensembling methods such as stacked generalization, gradient boosting, random forest, and least absolute shrinkage and selection operator (LASSO) regression. Stacked generalization is a new model which learns how to best combine the predictions from two or more models trained on the dataset. To demonstrate the applications of the proposed algorithm, aerial-intel datasets from the github data science repository are used. Based on the experimental results done on the agricultural data, the following observations have been made. The performance of the individual algorithm and hybrid ML algorithms are compared using cross-validation to identify the most promising performers for the agricultural dataset.  The accuracy of random forest regressor, gradient boosted tree regression, and stacked generalization ensemble methods are 87.71%, 86.98%, and 88.89% respectively. The proposed stacked generalization ML algorithm statistically outperforms with an accuracy of 88.89% and hence demonstrates that the proposed approach is an effective algorithm for predicting crop yield. The system also gives fast and accurate responses to the farmers.

摘要

近年来,数字化在农业、医学、推荐平台、物联网和天气预报等知识领域的重要性日益凸显。在农业领域,作物产量预估对于提高生产力和决策过程(如金融市场预测)以及解决粮食安全问题至关重要。本文的主要目标是使用混合机器学习 (ML) 算法来预测和提高作物产量预估的准确性。

本文提出了混合 ML 算法,这些算法使用专门的集成方法,如堆叠泛化、梯度提升、随机森林和最小绝对收缩和选择算子 (LASSO) 回归。堆叠泛化是一种新模型,它可以学习如何最好地结合在数据集上训练的两个或更多模型的预测结果。为了展示所提出算法的应用,使用了来自 github 数据科学存储库的航空数据集。

基于在农业数据上进行的实验结果,得出以下观察结果。通过交叉验证比较了单个算法和混合 ML 算法的性能,以确定最适合农业数据集的算法。随机森林回归器、梯度提升树回归器和堆叠泛化集成方法的准确性分别为 87.71%、86.98%和 88.89%。

所提出的堆叠泛化 ML 算法的准确性为 88.89%,在统计上表现优于其他算法,这表明该方法是一种预测作物产量的有效算法。该系统还可以快速准确地响应用户。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ddf/8689410/9679bc067fd7/f1000research-10-76627-g0000.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验