Suppr超能文献

通过磷酸基团中硫原子的数量来调节 DNA 中碱基和糖-磷酸骨架之间空穴转移的方向性。

Modulation of the Directionality of Hole Transfer between the Base and the Sugar-Phosphate Backbone in DNA with the Number of Sulfur Atoms in the Phosphate Group.

机构信息

Institut de Chimie Physique, UMR 8000 CNRS/Université Paris-Saclay, Bât. 349, Orsay 91405 Cedex, France.

Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan 48309-4479, United States.

出版信息

J Phys Chem B. 2022 Jan 20;126(2):430-442. doi: 10.1021/acs.jpcb.1c09068. Epub 2022 Jan 6.

Abstract

This work shows that S atom substitution in phosphate controls the directionality of hole transfer processes between the base and sugar-phosphate backbone in DNA systems. The investigation combines synthesis, electron spin resonance (ESR) studies in supercooled homogeneous solution, pulse radiolysis in aqueous solution at ambient temperature, and density functional theory (DFT) calculations of in-house synthesized model compound dimethylphosphorothioate (DMTP(O)═S) and nucleotide (5'--methoxyphosphorothioyl-2'-deoxyguanosine (G-P(O)═S)). ESR investigations show that DMTP(O)═S reacts with Cl to form the σσ* adduct radical -P-S[Formula: see text]Cl, which subsequently reacts with DMTP(O)═S to produce [-P-S[Formula: see text]S-P-]. -P-S[Formula: see text]Cl in G-P(O)═S undergoes hole transfer to Gua, forming the cation radical (G) via thermally activated hopping. However, pulse radiolysis measurements show that DMTP(O)═S forms the thiyl radical (-P-S) by one-electron oxidation, which did not produce [-P-S[Formula: see text]S-P-]. Gua in G-P(O)═S is oxidized unimolecularly by the -P-S intermediate in the sub-picosecond range. DFT thermochemical calculations explain the differences in ESR and pulse radiolysis results obtained at different temperatures.

摘要

这项工作表明,在 DNA 系统中,磷酸酯基中的 S 原子取代控制了碱基与糖-磷酸骨架之间空穴转移过程的方向性。该研究结合了合成、电子自旋共振(ESR)在过冷均相溶液中的研究、水溶液中室温下的脉冲辐射分解以及内部分合成模型化合物二甲基硫代磷酸酯(DMTP(O)═S)和核苷酸(5'-甲氧基硫代磷酸酯-2'-脱氧鸟苷(G-P(O)═S)的密度泛函理论(DFT)计算。ESR 研究表明,DMTP(O)═S 与 Cl 反应形成σσ*加合物自由基-P-S[Formula: see text]Cl,随后与 DMTP(O)═S 反应生成[-P-S[Formula: see text]S-P-]。-P-S[Formula: see text]Cl 在 G-P(O)═S 中通过热激活跳跃向 Gua 发生空穴转移,形成阳离子自由基(G)。然而,脉冲辐射分解测量表明,DMTP(O)═S 通过单电子氧化形成硫自由基(-P-S),而不会生成[-P-S[Formula: see text]S-P-]。Gua 在 G-P(O)═S 中通过 -P-S 中间体在亚皮秒范围内进行单分子氧化。DFT 热化学计算解释了在不同温度下获得的 ESR 和脉冲辐射分解结果之间的差异。

相似文献

2
One Way Traffic: Base-to-Backbone Hole Transfer in Nucleoside Phosphorodithioate.
Chemistry. 2020 Aug 3;26(43):9495-9505. doi: 10.1002/chem.202000247. Epub 2020 Jun 9.
5
Competition reactions of H2O•+ radical in concentrated Cl- aqueous solutions: picosecond pulse radiolysis study.
J Phys Chem A. 2012 Nov 29;116(47):11509-18. doi: 10.1021/jp309381z. Epub 2012 Nov 14.
6
7
Pulse radiolysis of the DNA-binding bisbenzimidazole derivatives Hoechst 33258 and 33342 in aqueous solutions.
Int J Radiat Biol. 2000 Sep;76(9):1157-66. doi: 10.1080/09553000050134393.
8
Direct formation of the C5'-radical in the sugar-phosphate backbone of DNA by high-energy radiation.
J Phys Chem B. 2012 May 24;116(20):5900-6. doi: 10.1021/jp3023919. Epub 2012 May 14.

引用本文的文献

1
Potentiality of Nucleoside as Antioxidant by Analysis on Oxidative Susceptibility, Drug Discovery, and Synthesis.
Curr Med Chem. 2025;32(5):880-906. doi: 10.2174/0109298673264900231023050108.
2
Secondary Electron Attachment-Induced Radiation Damage to Genetic Materials.
ACS Omega. 2023 Mar 15;8(12):10669-10689. doi: 10.1021/acsomega.2c06776. eCollection 2023 Mar 28.

本文引用的文献

1
The mystery of sub-picosecond charge transfer following irradiation of hydrated uridine monophosphate.
Phys Chem Chem Phys. 2021 Sep 29;23(37):21148-21162. doi: 10.1039/d0cp06482c.
2
Modified internucleoside linkages for nuclease-resistant oligonucleotides.
RSC Chem Biol. 2020 Dec 8;2(1):94-150. doi: 10.1039/d0cb00136h. eCollection 2021 Feb 1.
3
Ne-22 Ion-Beam Radiation Damage to DNA: From Initial Free Radical Formation to Resulting DNA-Base Damage.
ACS Omega. 2021 Jun 14;6(25):16600-16611. doi: 10.1021/acsomega.1c01954. eCollection 2021 Jun 29.
4
Oligonucleotide Phosphorothioates Enter Cells by Thiol-Mediated Uptake.
Angew Chem Int Ed Engl. 2021 Aug 23;60(35):19102-19106. doi: 10.1002/anie.202107327. Epub 2021 Jul 21.
5
Hydroxyl radical is a significant player in oxidative DNA damage in vivo.
Chem Soc Rev. 2021 Aug 7;50(15):8355-8360. doi: 10.1039/d1cs00044f. Epub 2021 Jun 15.
6
Rate constants of dichloride radical anion reactions with molecules of environmental interest in aqueous solution: a review.
Environ Sci Pollut Res Int. 2021 Aug;28(31):41552-41575. doi: 10.1007/s11356-021-14453-w. Epub 2021 Jun 4.
7
Rate constants of sulfate radical anion reactions with organic molecules: A review.
Chemosphere. 2019 Apr;220:1014-1032. doi: 10.1016/j.chemosphere.2018.12.156. Epub 2018 Dec 24.
8
Deprotonation of Guanine Radical Cation G Mediated by the Protonated Water Cluster.
J Phys Chem A. 2020 Jul 23;124(29):6076-6083. doi: 10.1021/acs.jpca.0c03748. Epub 2020 Jul 9.
9
One Way Traffic: Base-to-Backbone Hole Transfer in Nucleoside Phosphorodithioate.
Chemistry. 2020 Aug 3;26(43):9495-9505. doi: 10.1002/chem.202000247. Epub 2020 Jun 9.
10
Sulfur-centered hemi-bond radicals as active intermediates in S-DNA phosphorothioate oxidation.
Nucleic Acids Res. 2019 Dec 16;47(22):11514-11526. doi: 10.1093/nar/gkz987.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验