Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland.
Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan, 48309-4479, USA.
Chemistry. 2020 Aug 3;26(43):9495-9505. doi: 10.1002/chem.202000247. Epub 2020 Jun 9.
The directionality of the hole-transfer processes between DNA backbone and base was investigated by using phosphorodithioate [P(S )=S] components. ESR spectroscopy in homogeneous frozen aqueous solutions and pulse radiolysis in aqueous solution at ambient temperature confirmed initial formation of G -P(S )=S. The ionization potential of G-P(S )=S was calculated to be slightly lower than that of guanine in 5'-dGMP. Subsequent thermally activated hole transfer from G to P(S )=S led to dithiyl radical (P-2S ) formation on the μs timescale. In parallel, ESR spectroscopy, pulse radiolysis, and density functional theory (DFT) calculations confirmed P-2S formation in an abasic phosphorodithioate model compound. ESR investigations at low temperatures and higher G-P(S )=S concentrations showed a bimolecular conversion of P-2S to the σ -σ* -bonded dimer anion radical [-P-2S 2S-P-] [ΔG (150 K, DFT)=-7.2 kcal mol ]. However, [-P-2S 2S-P-] formation was not observed by pulse radiolysis [ΔG° (298 K, DFT)=-1.4 kcal mol ]. Neither P-2S nor [-P-2S 2S-P-] oxidized guanine base; only base-to-backbone hole transfer occurs in phosphorodithioate.
通过使用磷硫代酯 [P(S)=S] 组分研究了 DNA 骨架和碱基之间的空穴转移过程的方向性。均匀冷冻水溶液中的 ESR 光谱和环境温度下水溶液中的脉冲辐射解法证实了初始 G-P(S)=S 的形成。G-P(S)=S 的电离势略低于 5'-dGMP 中的鸟嘌呤。随后,热激活的空穴从 G 转移到 P(S)=S,导致在 μs 时间尺度上形成二硫自由基(P-2S)。同时,ESR 光谱、脉冲辐射解法和密度泛函理论(DFT)计算证实了无碱基磷硫代酯模型化合物中 P-2S 的形成。在低温和更高的 G-P(S)=S 浓度下的 ESR 研究表明,P-2S 以双分子方式转化为σ-σ*键合的二聚阴离子自由基[-P-2S 2S-P-] [ΔG(150 K,DFT)=-7.2 kcal mol]。然而,脉冲辐射解法未观察到[-P-2S 2S-P-]的形成[ΔG°(298 K,DFT)=-1.4 kcal mol]。P-2S 和[-P-2S 2S-P-]均未氧化鸟嘌呤碱基;只有磷硫代酯中发生碱基到骨架的空穴转移。