Suppr超能文献

利用早期预警信号预测心理系统中的关键转变:理论与实践考量

Anticipating critical transitions in psychological systems using early warning signals: Theoretical and practical considerations.

作者信息

Dablander Fabian, Pichler Anton, Cika Arta, Bacilieri Andrea

机构信息

Department of Psychological Methods, University of Amsterdam.

Institute for New Economic Thinking, Oxford Martin School, University of Oxford.

出版信息

Psychol Methods. 2023 Aug;28(4):765-790. doi: 10.1037/met0000450. Epub 2022 Jan 6.

Abstract

Many real-world systems can exhibit tipping points and multiple stable states, creating the potential for sudden and difficult to reverse transitions into a less desirable regime. The theory of dynamical systems points to the existence of generic early warning signals that may precede these so-called critical transitions. Recently, psychologists have begun to conceptualize mental disorders such as depression as an alternative stable state, and suggested that early warning signals based on the phenomenon of critical slowing down might be useful for predicting transitions into depression and other psychiatric disorders. Harnessing the potential of early warning signals requires us to understand their limitations as well as the factors influencing their performance in practice. In this article, we (a) review limitations of early warning signals based on critical slowing down to better understand when they can and cannot occur, and (b) study the conditions under which early warning signals may anticipate critical transitions in online-monitoring settings by simulating from a bistable dynamical system, varying crucial features such as sampling frequency, noise intensity, and speed of approaching the tipping point. We find that, in sharp contrast to their reputation of being generic or model-agnostic, whether early warning signals occur or not strongly depends on the specifics of the system. We also find that they are very sensitive to noise, potentially limiting their utility in practical applications. We discuss the implications of our findings and provide suggestions and recommendations for future research. (PsycInfo Database Record (c) 2023 APA, all rights reserved).

摘要

许多现实世界的系统可能会出现临界点和多个稳定状态,从而有可能突然且难以逆转地转变为不太理想的状态。动力系统理论指出,在这些所谓的临界转变之前可能存在一般的早期预警信号。最近,心理学家开始将抑郁症等精神障碍概念化为一种替代稳定状态,并提出基于临界减缓现象的早期预警信号可能有助于预测向抑郁症和其他精神障碍的转变。利用早期预警信号的潜力需要我们了解它们的局限性以及影响其在实际应用中表现的因素。在本文中,我们(a)回顾基于临界减缓的早期预警信号的局限性,以更好地理解它们何时会出现以及何时不会出现,并且(b)通过从双稳动力系统进行模拟,改变诸如采样频率、噪声强度和接近临界点的速度等关键特征,研究早期预警信号在在线监测环境中可能预测临界转变的条件。我们发现,与它们具有通用性或与模型无关的声誉形成鲜明对比的是,早期预警信号是否出现很大程度上取决于系统的具体情况。我们还发现它们对噪声非常敏感,这可能会限制它们在实际应用中的效用。我们讨论了研究结果的含义,并为未来研究提供了建议。(PsycInfo数据库记录(c)2023美国心理学会,保留所有权利)

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验