Suppr超能文献

自然语言处理辅助的癌症联合治疗文献检索与分析。

Natural Language Processing-Assisted Literature Retrieval and Analysis for Combination Therapy in Cancer.

机构信息

Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX.

Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX.

出版信息

JCO Clin Cancer Inform. 2022 Jan;6:e2100109. doi: 10.1200/CCI.21.00109.

Abstract

PURPOSE

Despite advances in molecular therapeutics, few anticancer agents achieve durable responses. Rational combinations using two or more anticancer drugs have the potential to achieve a synergistic effect and overcome drug resistance, enhancing antitumor efficacy. A publicly accessible biomedical literature search engine dedicated to this domain will facilitate knowledge discovery and reduce manual search and review.

METHODS

We developed RetriLite, an information retrieval and extraction framework that leverages natural language processing and domain-specific knowledgebase to computationally identify highly relevant papers and extract key information. The modular architecture enables RetriLite to benefit from synergizing information retrieval and natural language processing techniques while remaining flexible to customization. We customized the application and created an informatics pipeline that strategically identifies papers that describe efficacy of using combination therapies in clinical or preclinical studies.

RESULTS

In a small pilot study, RetriLite achieved an score of 0.93. A more extensive validation experiment was conducted to determine agents that have enhanced antitumor efficacy in vitro or in vivo with poly (ADP-ribose) polymerase inhibitors: 95.9% of the papers determined to be relevant by our application were true positive and the application's feature of distinguishing a clinical paper from a preclinical paper achieved an accuracy of 97.6%. Interobserver assessment was conducted, which resulted in a 100% concordance. The data derived from the informatics pipeline have also been made accessible to the public via a dedicated online search engine with an intuitive user interface.

CONCLUSION

RetriLite is a framework that can be applied to establish domain-specific information retrieval and extraction systems. The extensive and high-quality metadata tags along with keyword highlighting facilitate information seekers to more effectively and efficiently discover knowledge in the combination therapy domain.

摘要

目的

尽管分子治疗学取得了进展,但仍很少有抗癌药物能产生持久的反应。合理地使用两种或更多种抗癌药物进行联合治疗有可能产生协同作用,克服耐药性,提高抗肿瘤疗效。一个专门用于该领域的公共生物医学文献搜索引擎将有助于知识发现,并减少手动搜索和审查。

方法

我们开发了 RetriLite,这是一个信息检索和提取框架,利用自然语言处理和领域特定知识库来计算识别高度相关的论文并提取关键信息。模块化架构使 RetriLite 能够从信息检索和自然语言处理技术的协同作用中受益,同时保持灵活性以进行定制。我们定制了该应用程序,并创建了一个信息学管道,该管道策略性地识别描述组合疗法在临床或临床前研究中的疗效的论文。

结果

在一项小型试点研究中,RetriLite 的 得分为 0.93。进行了更广泛的验证实验,以确定在体外或体内与聚(ADP-核糖)聚合酶抑制剂联合使用具有增强抗肿瘤疗效的药物:我们的应用程序确定为相关的论文中有 95.9%是真正的阳性,并且该应用程序区分临床论文和临床前论文的功能的准确率为 97.6%。进行了观察者间评估,结果为 100%一致。通过具有直观用户界面的专用在线搜索引擎,也可以公开访问从信息学管道中获得的数据。

结论

RetriLite 是一种可以应用于建立特定于领域的信息检索和提取系统的框架。广泛而高质量的元数据标签以及关键字突出显示,使信息搜索者能够更有效地发现组合治疗领域的知识。

相似文献

本文引用的文献

2
An AI boost for clinical trials.人工智能助力临床试验。
Nature. 2019 Sep;573(7775):S100-S102. doi: 10.1038/d41586-019-02871-3.
3
OCTANE: Oncology Clinical Trial Annotation Engine.辛烷值:肿瘤学临床试验注释引擎。
JCO Clin Cancer Inform. 2019 Jul;3:1-11. doi: 10.1200/CCI.18.00145.
7
Combination therapy in combating cancer.癌症治疗中的联合疗法。
Oncotarget. 2017 Jun 6;8(23):38022-38043. doi: 10.18632/oncotarget.16723.
8
Automated identification of molecular effects of drugs (AIMED).药物分子效应的自动识别(AIMED)
J Am Med Inform Assoc. 2016 Jul;23(4):758-65. doi: 10.1093/jamia/ocw030. Epub 2016 Apr 23.
9
DrugBank 4.0: shedding new light on drug metabolism.DrugBank 4.0:揭示药物代谢的新视角。
Nucleic Acids Res. 2014 Jan;42(Database issue):D1091-7. doi: 10.1093/nar/gkt1068. Epub 2013 Nov 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验