Suppr超能文献

Rad5 解旋酶和 RING 结构域通过其独立的催化活性促进基因组稳定性。

The Rad5 Helicase and RING Domains Contribute to Genome Stability through their Independent Catalytic Activities.

机构信息

DNA Repair Research Group, Institute of Genetics, Biological Research Centre, Szeged, Eotvos Loránd Research Network, Szeged H-6726, Hungary; University of Szeged, Doctoral School of Biology, Hungary.

HCEMM-BRC Mutagenesis and Carcinogenesis Research Group, Institute of Genetics, Biological Research Centre, Szeged, Eotvos Loránd Research Network, Szeged H-6726, Hungary.

出版信息

J Mol Biol. 2022 Mar 15;434(5):167437. doi: 10.1016/j.jmb.2021.167437. Epub 2022 Jan 3.

Abstract

Genomic stability is compromised by DNA damage that obstructs replication. Rad5 plays a prominent role in DNA damage bypass processes that evolved to ensure the continuation of stalled replication. Like its human orthologs, the HLTF and SHPRH tumor suppressors, yeast Rad5 has a RING domain that supports ubiquitin ligase activity promoting PCNA polyubiquitylation and a helicase domain that in the case of HLTF and Rad5 was shown to exhibit an ATPase-linked replication fork reversal activity. The RING domain is embedded in the helicase domain, confusing their separate investigation and the understanding of the exact role of Rad5 in DNA damage bypass. Particularly, it is still debated whether the helicase domain plays a catalytic or a non-enzymatic role during error-free damage bypass and whether it facilitates a function separately from the RING domain. In this study, through in vivo and in vitro characterization of domain-specific mutants, we delineate the contributions of the two domains to Rad5 function. Yeast genetic experiments and whole-genome sequencing complemented with biochemical assays demonstrate that the ubiquitin ligase and the ATPase-linked activities of Rad5 exhibit independent catalytic activities in facilitating separate pathways during error-free lesion bypass. Our results also provide important insights into the mutagenic role of Rad5 and indicate its tripartite contribution to DNA damage tolerance.

摘要

基因组稳定性受到阻碍复制的 DNA 损伤的影响。Rad5 在进化过程中发挥了重要作用,以确保停滞的复制能够继续进行,从而实现 DNA 损伤绕过过程。与人类同源物 HLTF 和 SHPRH 肿瘤抑制因子一样,酵母 Rad5 具有一个 RING 结构域,支持泛素连接酶活性,促进 PCNA 的多泛素化,以及一个解旋酶结构域,HLTF 和 Rad5 的解旋酶结构域被证明具有 ATP 酶连接的复制叉反转活性。RING 结构域嵌入在解旋酶结构域中,这使得对它们的单独研究和对 Rad5 在 DNA 损伤绕过中的确切作用的理解变得复杂。特别是,目前仍在争论解旋酶结构域在无错误损伤绕过过程中是否发挥催化作用还是非酶作用,以及它是否独立于 RING 结构域发挥功能。在这项研究中,通过对特定结构域突变体的体内和体外特性进行分析,我们描绘了两个结构域对 Rad5 功能的贡献。酵母遗传实验和全基因组测序与生化分析相结合,证明 Rad5 的泛素连接酶和 ATP 酶连接活性在无错误损伤绕过过程中独立发挥催化作用,促进了两条不同的途径。我们的结果还为 Rad5 的诱变作用提供了重要的见解,并表明其对 DNA 损伤耐受的三分贡献。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验