Suppr超能文献

一种基于高密度平行板漫射光学层析成像的乳腺癌成像数据自校准方法。

A Data Self-Calibration Method Based on High-Density Parallel Plate Diffuse Optical Tomography for Breast Cancer Imaging.

作者信息

Wang Xin, Hu Rui, Wang Yirong, Yan Qiang, Wang Yihan, Kang Fei, Zhu Shouping

机构信息

School of Life Science and Technology, Xidian University, Xi'an, China.

Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, Xi'an, China.

出版信息

Front Oncol. 2021 Dec 21;11:786289. doi: 10.3389/fonc.2021.786289. eCollection 2021.

Abstract

When performing the diffuse optical tomography (DOT) of the breast, the mismatch between the forward model and the experimental conditions will significantly hinder the reconstruction accuracy. Therefore, the reference measurement is commonly used to calibrate the measured data before the reconstruction. However, it is complicated to customize corresponding reference phantoms based on the breast shape and background optical parameters of different subjects in clinical trials. Furthermore, although high-density (HD) DOT configuration has been proven to improve imaging quality, a large number of source-detector (SD) pairs also increase the difficulty of multi-channel correction. To enhance the applicability of the breast DOT, a data self-calibration method based on an HD parallel-plate DOT system is proposed in this paper to replace the conventional relative measurement on a reference phantom. The reference predicted data can be constructed directly from the measurement data with the support of the HD-DOT system, which has nearly a hundred sets of measurements at each SD distance. The proposed scheme has been validated by Monte Carlo (MC) simulation, breast-size phantom experiments, and clinical trials, exhibiting the feasibility in ensuring the quality of the DOT reconstruction while effectively reducing the complexity associated with relative measurements on reference phantoms.

摘要

在进行乳腺扩散光学层析成像(DOT)时,正向模型与实验条件之间的不匹配会显著阻碍重建精度。因此,在重建之前,通常使用参考测量来校准测量数据。然而,在临床试验中,根据不同受试者的乳房形状和背景光学参数定制相应的参考体模很复杂。此外,尽管高密度(HD)DOT配置已被证明可提高成像质量,但大量的源探测器(SD)对也增加了多通道校正的难度。为提高乳腺DOT的适用性,本文提出一种基于HD平行板DOT系统的数据自校准方法,以取代在参考体模上进行的传统相对测量。在HD-DOT系统的支持下,参考预测数据可直接从测量数据构建,该系统在每个SD距离处有近百组测量值。所提方案已通过蒙特卡罗(MC)模拟、乳房尺寸体模实验和临床试验得到验证,显示出在确保DOT重建质量的同时有效降低与参考体模相对测量相关复杂性的可行性。

相似文献

1
A Data Self-Calibration Method Based on High-Density Parallel Plate Diffuse Optical Tomography for Breast Cancer Imaging.
Front Oncol. 2021 Dec 21;11:786289. doi: 10.3389/fonc.2021.786289. eCollection 2021.
2
Atlas-based head modeling and spatial normalization for high-density diffuse optical tomography: in vivo validation against fMRI.
Neuroimage. 2014 Jan 15;85 Pt 1(0 1):117-26. doi: 10.1016/j.neuroimage.2013.03.069. Epub 2013 Apr 8.
3
Impact of errors in experimental parameters on reconstructed breast images using diffuse optical tomography.
Biomed Opt Express. 2018 Feb 13;9(3):1130-1150. doi: 10.1364/BOE.9.001130. eCollection 2018 Mar 1.
8
Regression-based neural network for improving image reconstruction in diffuse optical tomography.
Biomed Opt Express. 2022 Mar 11;13(4):2006-2017. doi: 10.1364/BOE.449448. eCollection 2022 Apr 1.
9
Diffuser-aided diffuse optical imaging for breast tumor: a feasibility study based on time-resolved three-dimensional Monte Carlo modeling.
IEEE Trans Biomed Eng. 2012 May;59(5):1454-61. doi: 10.1109/TBME.2012.2187900. Epub 2012 Mar 1.
10
Flux density calibration in diffuse optical tomographic systems.
J Biomed Opt. 2013 Feb;18(2):26023. doi: 10.1117/1.JBO.18.2.026023.

本文引用的文献

1
Three-compartment-breast (3CB) prior-guided diffuse optical tomography based on dual-energy digital breast tomosynthesis (DBT).
Biomed Opt Express. 2021 Jul 13;12(8):4837-4851. doi: 10.1364/BOE.431244. eCollection 2021 Aug 1.
2
Effect and correction of optode coupling errors in breast imaging using diffuse optical tomography.
Biomed Opt Express. 2021 Jan 4;12(2):689-704. doi: 10.1364/BOE.411595. eCollection 2021 Feb 1.
5
A review of optical breast imaging: Multi-modality systems for breast cancer diagnosis.
Eur J Radiol. 2020 Aug;129:109067. doi: 10.1016/j.ejrad.2020.109067. Epub 2020 May 18.
8
Adaptive Gaussian Weighted Laplace Prior Regularization Enables Accurate Morphological Reconstruction in Fluorescence Molecular Tomography.
IEEE Trans Med Imaging. 2019 Dec;38(12):2726-2734. doi: 10.1109/TMI.2019.2912222. Epub 2019 Apr 22.
9
Back-propagation neural network-based reconstruction algorithm for diffuse optical tomography.
J Biomed Opt. 2018 Dec;24(5):1-12. doi: 10.1117/1.JBO.24.5.051407.
10
Direct approach to compute Jacobians for diffuse optical tomography using perturbation Monte Carlo-based photon "replay".
Biomed Opt Express. 2018 Sep 4;9(10):4588-4603. doi: 10.1364/BOE.9.004588. eCollection 2018 Oct 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验