Suppr超能文献

实验参数误差对使用漫射光学层析成像重建的乳腺图像的影响。

Impact of errors in experimental parameters on reconstructed breast images using diffuse optical tomography.

作者信息

Deng Bin, Lundqvist Mats, Fang Qianqian, Carp Stefan A

机构信息

Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA.

Philips Healthcare, Torshamnsgatan 30A, 164 40 Kista, Sweden.

出版信息

Biomed Opt Express. 2018 Feb 13;9(3):1130-1150. doi: 10.1364/BOE.9.001130. eCollection 2018 Mar 1.

Abstract

Near-infrared diffuse optical tomography (NIR-DOT) is an emerging technology that offers hemoglobin based, functional imaging tumor biomarkers for breast cancer management. The most promising clinical translation opportunities are in the differential diagnosis of malignant benign lesions, and in early response assessment and guidance for neoadjuvant chemotherapy. Accurate quantification of the tissue oxy- and deoxy-hemoglobin concentration across the field of view, as well as repeatability during longitudinal imaging in the context of therapy guidance, are essential for the successful translation of NIR-DOT to clinical practice. The ill-posed and ill-condition nature of the DOT inverse problem makes this technique particularly susceptible to model errors that may occur, for example, when the experimental conditions do not fully match the assumptions built into the image reconstruction process. To evaluate the susceptibility of DOT images to experimental errors that might be encountered in practice for a parallel-plate NIR-DOT system, we simulated 7 different types of errors, each with a range of magnitudes. We generated simulated data by using digital breast phantoms derived from five actual mammograms of healthy female volunteers, to which we added a 1-cm tumor. After applying each of the experimental error types and magnitudes to the simulated measurements, we reconstructed optical images with and without structural prior guidance and assessed the overall error in the total hemoglobin concentrations (HbT) and in the HbT contrast between the lesion and surrounding area the best-case scenarios. It is found that slight in-plane probe misalignment and plate rotation did not result in large quantification errors. However, any out-of-plane probe tilting could result in significant deterioration in lesion contrast. Among the error types investigated in this work, optical images were the least likely to be impacted by breast shape inaccuracies but suffered the largest deterioration due to cross-talk between signal channels. However, errors in optical images could be effectively controlled when experimental parameters were properly estimated during data acquisition and accounted for in the image processing procedure. Finally, optical images recovered using structural priors were, in general, less susceptible to experimental errors; however, lesion contrasts were more sensitive to errors when tumor locations were used as info. Findings in this simulation study can provide guidelines for system design and operation in optical breast imaging studies.

摘要

近红外漫射光学层析成像(NIR-DOT)是一项新兴技术,可为乳腺癌管理提供基于血红蛋白的功能成像肿瘤生物标志物。最有前景的临床转化机会在于恶性与良性病变的鉴别诊断,以及新辅助化疗的早期反应评估和指导。在视野范围内准确量化组织氧合血红蛋白和脱氧血红蛋白浓度,以及在治疗指导的纵向成像过程中的可重复性,对于NIR-DOT成功转化为临床实践至关重要。DOT逆问题的不适定和病态性质使得该技术特别容易受到模型误差的影响,例如,当实验条件与图像重建过程中所基于的假设不完全匹配时就可能出现这种误差。为了评估在平行板NIR-DOT系统实际应用中DOT图像对可能遇到的实验误差的敏感性,我们模拟了7种不同类型的误差,每种误差具有一系列的量级。我们使用从5名健康女性志愿者的实际乳腺X线照片衍生而来的数字乳腺模型生成模拟数据,并在其中添加了一个1厘米的肿瘤。在将每种实验误差类型和量级应用于模拟测量后,我们在有无结构先验指导的情况下重建光学图像,并评估总血红蛋白浓度(HbT)以及病变与周围区域之间HbT对比度的总体误差——这是最佳情况。结果发现,平面内探头的轻微未对准和平板旋转不会导致大的量化误差。然而,任何平面外探头倾斜都可能导致病变对比度显著下降。在这项工作中研究的误差类型中,光学图像受乳房形状不准确影响的可能性最小,但由于信号通道之间的串扰而恶化最大。然而,当在数据采集期间正确估计实验参数并在图像处理过程中加以考虑时,光学图像中的误差可以得到有效控制。最后,一般来说,使用结构先验恢复的光学图像对实验误差不太敏感;然而,当将肿瘤位置用作信息时,病变对比度对误差更敏感。这项模拟研究的结果可为光学乳腺成像研究中的系统设计和操作提供指导。

相似文献

引用本文的文献

本文引用的文献

8
Review of optical breast imaging and spectroscopy.光学乳腺成像和光谱学综述。
J Biomed Opt. 2016 Sep;21(9):091311. doi: 10.1117/1.JBO.21.9.091311.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验