Suppr超能文献

自适应高斯加权拉普拉斯先验正则化实现荧光分子断层成像的精确形态重建。

Adaptive Gaussian Weighted Laplace Prior Regularization Enables Accurate Morphological Reconstruction in Fluorescence Molecular Tomography.

出版信息

IEEE Trans Med Imaging. 2019 Dec;38(12):2726-2734. doi: 10.1109/TMI.2019.2912222. Epub 2019 Apr 22.

Abstract

Fluorescence molecular tomography (FMT), as a powerful imaging technique in preclinical research, can offer the three-dimensional distribution of biomarkers by detecting the fluorescently labelled probe noninvasively. However, because of the light scattering effect and the ill-pose of inverse problem, it is challenging to develop an efficient reconstruction method, which can provide accurate location and morphology of the fluorescence distribution. In this research, we proposed a novel adaptive Gaussian weighted Laplace prior (AGWLP) regularization method, which assumed the variance of fluorescence intensity between any two voxels had a non-linear correlation with their Gaussian distance. It utilized an adaptive Gaussian kernel parameter strategy to achieve accurate morphological reconstructions in FMT. To evaluate the performance of the AGWLP method, we conducted numerical simulation and in vivo experiments. The results were compared with fast iterative shrinkage (FIS) thresholding method, split Bregman-resolved TV (SBRTV) regularization method, and Gaussian weighted Laplace prior (GWLP) regularization method. We validated in vivo imaging results against planar fluorescence images of frozen sections. The results demonstrated that the AGWLP method achieved superior performance in both location and shape recovery of fluorescence distribution. This enabled FMT more suitable and practical for in vivo visualization of biomarkers.

摘要

荧光分子断层成像(FMT)作为一种强大的临床前研究成像技术,可以通过非侵入性地检测荧光标记探针来提供生物标志物的三维分布。然而,由于光散射效应和不适定的反问题,开发一种能够提供荧光分布的准确位置和形态的高效重建方法具有挑战性。在这项研究中,我们提出了一种新的自适应高斯加权拉普拉斯先验(AGWLP)正则化方法,该方法假设荧光强度在任意两个体素之间的方差与它们的高斯距离呈非线性相关。它利用自适应高斯核参数策略来实现 FMT 中的准确形态重建。为了评估 AGWLP 方法的性能,我们进行了数值模拟和体内实验。将结果与快速迭代收缩(FIS)阈值方法、分裂 Bregman 解析 TV(SBRTV)正则化方法和高斯加权拉普拉斯先验(GWLP)正则化方法进行了比较。我们将体内成像结果与冷冻切片的平面荧光图像进行了验证。结果表明,AGWLP 方法在荧光分布的位置和形状恢复方面都具有优异的性能。这使得 FMT 更适合和实用,可用于生物标志物的体内可视化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验