Suppr超能文献

用于焦磷酸传感的超分子组装体的数学建模

Mathematical Modeling of a Supramolecular Assembly for Pyrophosphate Sensing.

作者信息

Emami Fereshteh, Abdollahi Hamid, Minami Tsyuoshi, Peco Ben, Reliford Sean

机构信息

Department of Chemistry and Physics, Southeastern Louisiana University, Hammond, LA, United States.

Department of Chemistry, Institute for Advanced Studies in Basic Sciences, Zanjan, Iran.

出版信息

Front Chem. 2021 Dec 21;9:759714. doi: 10.3389/fchem.2021.759714. eCollection 2021.

Abstract

The power of sensing molecules is often characterized in part by determining their thermodynamic/dynamic properties, in particular the binding constant of a guest to a host. In many studies, traditional nonlinear regression analysis has been used to determine the binding constants, which cannot be applied to complex systems and limits the reliability of such calculations. Supramolecular sensor systems include many interactions that make such chemical systems complicated. The challenges in creating sensing molecules can be significantly decreased through the availability of detailed mathematical models of such systems. Here, we propose uncovering accurate thermodynamic parameters of chemical reactions using better-defined mathematical modeling-fitting analysis is the key to understanding molecular assemblies and developing new bio/sensing agents. The supramolecular example we chose for this investigation is a self-assembled sensor consists of a synthesized receptor, DPA (DPA = dipicolylamine)-appended phenylboronic acid () in combination with Zn(.Zn) that forms various assemblies with a fluorophore like alizarin red S (ARS). The self-assemblies can detect multi-phosphates like pyrophosphate (PPi) in aqueous solutions. We developed a mathematical model for the simultaneous quantitative analysis of twenty-seven intertwined interactions and reactions between the sensor (.Zn-ARS) and the target (PPi) for the first time, relying on the Newton-Raphson algorithm. Through analyzing simulated potentiometric titration data, we describe the concurrent determination of thermodynamic parameters of the different guest-host bindings. Various values of temperatures, initial concentrations, and starting pHs were considered to predict the required measurement conditions for thermodynamic studies. Accordingly, we determined the species concentrations of different host-guest bindings in a generalized way. This way, the binding capabilities of a set of species can be quantitatively examined to systematically measure the power of the sensing system. This study shows analyzing supramolecular self-assemblies with solid mathematical models has a high potential for a better understanding of molecular interactions within complex chemical networks and developing new sensors with better sensing effects for bio-purposes.

摘要

传感分子的能力通常部分通过确定其热力学/动力学性质来表征,特别是客体与主体的结合常数。在许多研究中,传统的非线性回归分析已被用于确定结合常数,但这种方法不适用于复杂系统,限制了此类计算的可靠性。超分子传感器系统包含许多相互作用,这使得此类化学系统变得复杂。通过提供此类系统的详细数学模型,可以显著降低创建传感分子的挑战。在此,我们提出使用定义更明确的数学建模来揭示化学反应的准确热力学参数——拟合分析是理解分子组装和开发新型生物/传感剂的关键。我们选择用于这项研究的超分子示例是一种自组装传感器,它由合成受体、 appended phenylboronic acid(此处原文似乎不完整)与Zn(.Zn)组合而成,与茜素红S(ARS)等荧光团形成各种组装体。这些自组装体可以检测水溶液中的多磷酸盐,如焦磷酸盐(PPi)。我们首次开发了一个数学模型,用于同时定量分析传感器(.Zn - ARS)与目标(PPi)之间的二十七个相互交织的相互作用和反应,该模型依赖于牛顿 - 拉夫森算法。通过分析模拟的电位滴定数据,我们描述了不同客体 - 主体结合的热力学参数的同时测定。考虑了各种温度、初始浓度和起始pH值,以预测热力学研究所需的测量条件。据此,我们以广义方式确定了不同客体 - 主体结合的物种浓度。通过这种方式,可以定量检查一组物种的结合能力,以系统地测量传感系统的能力。这项研究表明,用坚实的数学模型分析超分子自组装体在更好地理解复杂化学网络中的分子相互作用以及开发具有更好生物用途传感效果的新型传感器方面具有很大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79d7/8724255/25dbf940dd39/fchem-09-759714-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验