Suppr超能文献

如何以及为何构建数学模型:使用朊病毒聚集的案例研究。

How and why to build a mathematical model: A case study using prion aggregation.

机构信息

Department of Applied Mathematics, School of Natural Sciences, University of California, Merced, California 95343.

Department of Applied Mathematics, School of Natural Sciences, University of California, Merced, California 95343

出版信息

J Biol Chem. 2020 Apr 10;295(15):5022-5035. doi: 10.1074/jbc.REV119.009851. Epub 2020 Jan 31.

Abstract

Biological systems are inherently complex, and the increasing level of detail with which we are able to experimentally probe such systems continually reveals new complexity. Fortunately, mathematical models are uniquely positioned to provide a tool suitable for rigorous analysis, hypothesis generation, and connecting results from isolated experiments with results from and whole-organism studies. However, developing useful mathematical models is challenging because of the often different domains of knowledge required in both math and biology. In this work, we endeavor to provide a useful guide for researchers interested in incorporating mathematical modeling into their scientific process. We advocate for the use of conceptual diagrams as a starting place to anchor researchers from both domains. These diagrams are useful for simplifying the biological process in question and distinguishing the essential components. Not only do they serve as the basis for developing a variety of mathematical models, but they ensure that any mathematical formulation of the biological system is led primarily by scientific questions. We provide a specific example of this process from our own work in studying prion aggregation to show the power of mathematical models to synergistically interact with experiments and push forward biological understanding. Choosing the most suitable model also depends on many different factors, and we consider how to make these choices based on different scales of biological organization and available data. We close by discussing the many opportunities that abound for both experimentalists and modelers to take advantage of collaborative work in this field.

摘要

生物系统本质上是复杂的,我们能够以实验手段探测这些系统的详细程度不断提高,这不断揭示出新的复杂性。幸运的是,数学模型是唯一适合严格分析、假设生成以及将孤立实验的结果与整体研究的结果联系起来的工具。然而,开发有用的数学模型具有挑战性,因为数学和生物学都需要不同领域的知识。在这项工作中,我们努力为有兴趣将数学建模纳入其科学过程的研究人员提供有用的指南。我们提倡使用概念图作为锚定来自这两个领域的研究人员的起点。这些图对于简化所研究的生物过程和区分必要的组成部分非常有用。它们不仅是开发各种数学模型的基础,而且还确保了对生物系统的任何数学表述都主要由科学问题驱动。我们提供了一个来自我们自己研究朊病毒聚集的具体示例,以展示数学模型与实验协同作用并推动生物学理解的强大功能。选择最合适的模型还取决于许多不同的因素,我们考虑如何根据不同的生物组织尺度和可用数据来做出这些选择。最后,我们讨论了实验家和建模者在这一领域充分利用合作工作的许多机会。

相似文献

1
How and why to build a mathematical model: A case study using prion aggregation.
J Biol Chem. 2020 Apr 10;295(15):5022-5035. doi: 10.1074/jbc.REV119.009851. Epub 2020 Jan 31.
2
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
4
A mathematical model of the dynamics of prion aggregates with chaperone-mediated fragmentation.
J Math Biol. 2016 May;72(6):1555-78. doi: 10.1007/s00285-015-0921-0. Epub 2015 Aug 22.
5
Predicting the aggregation propensity of prion sequences.
Virus Res. 2015 Sep 2;207:127-35. doi: 10.1016/j.virusres.2015.03.001. Epub 2015 Mar 6.
6
Prion dynamics with size dependency-strain phenomena.
J Biol Dyn. 2010 Jan;4(1):28-42. doi: 10.1080/17513750902935208.
9
PlantSimLab - a modeling and simulation web tool for plant biologists.
BMC Bioinformatics. 2019 Oct 21;20(1):508. doi: 10.1186/s12859-019-3094-9.

引用本文的文献

1
The Hill-Type Equation Reveals the Regulatory Principle of Target Protein Expression Led by p53 Pulsing.
FASEB Bioadv. 2025 Jun 6;7(8):e70026. doi: 10.1096/fba.2024-00220. eCollection 2025 Aug.
2
Supercritical Carbon Dioxide Extraction of Coumarins from the Aerial Parts of .
Molecules. 2024 Jun 8;29(12):2741. doi: 10.3390/molecules29122741.
3
MIL-CELL: a tool for multi-scale simulation of yeast replication and prion transmission.
Eur Biophys J. 2023 Nov;52(8):673-704. doi: 10.1007/s00249-023-01679-4. Epub 2023 Sep 5.
6
A group theoretic approach to model comparison with simplicial representations.
J Math Biol. 2022 Oct 9;85(5):48. doi: 10.1007/s00285-022-01807-2.
7
Lost in modelling and simulation?
ADMET DMPK. 2021 Mar 22;9(2):75-109. doi: 10.5599/admet.923. eCollection 2021.
8
Mathematical Modeling of a Supramolecular Assembly for Pyrophosphate Sensing.
Front Chem. 2021 Dec 21;9:759714. doi: 10.3389/fchem.2021.759714. eCollection 2021.
10
The Art and Science of Building a Computational Model to Understand Hemostasis.
Semin Thromb Hemost. 2021 Mar;47(2):129-138. doi: 10.1055/s-0041-1722861. Epub 2021 Feb 26.

本文引用的文献

1
Multiscale Computational Modeling of Tubulin-Tubulin Lateral Interaction.
Biophys J. 2019 Oct 1;117(7):1234-1249. doi: 10.1016/j.bpj.2019.08.011. Epub 2019 Aug 16.
2
Human prion diseases.
Curr Opin Infect Dis. 2019 Jun;32(3):272-276. doi: 10.1097/QCO.0000000000000552.
3
The Genetic Basis of Mutation Rate Variation in Yeast.
Genetics. 2019 Feb;211(2):731-740. doi: 10.1534/genetics.118.301609. Epub 2018 Nov 30.
4
Cellular mechanisms responsible for cell-to-cell spreading of prions.
Cell Mol Life Sci. 2018 Jul;75(14):2557-2574. doi: 10.1007/s00018-018-2823-y. Epub 2018 May 14.
5
Precision Medicine with Imprecise Therapy: Computational Modeling for Chemotherapy in Breast Cancer.
Transl Oncol. 2018 Jun;11(3):732-742. doi: 10.1016/j.tranon.2018.03.009. Epub 2018 Apr 16.
6
PhysiCell: An open source physics-based cell simulator for 3-D multicellular systems.
PLoS Comput Biol. 2018 Feb 23;14(2):e1005991. doi: 10.1371/journal.pcbi.1005991. eCollection 2018 Feb.
7
Mathematical Modeling of Protein Misfolding Mechanisms in Neurological Diseases: A Historical Overview.
Front Neurol. 2018 Feb 2;9:37. doi: 10.3389/fneur.2018.00037. eCollection 2018.
8
Update: Plant Cortical Microtubule Arrays.
Plant Physiol. 2018 Jan;176(1):94-105. doi: 10.1104/pp.17.01329. Epub 2017 Nov 28.
9
Snoopy's hybrid simulator: a tool to construct and simulate hybrid biological models.
BMC Syst Biol. 2017 Jul 28;11(1):71. doi: 10.1186/s12918-017-0449-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验