Wei Chuanliang, Tan Liwen, Zhang Yuchan, Xi Baojuan, Xiong Shenglin, Feng Jinkui
Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), Research Center for Carbon Nanomaterials, School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R. China.
School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
ACS Appl Mater Interfaces. 2022 Jan 19;14(2):2979-2988. doi: 10.1021/acsami.1c22787. Epub 2022 Jan 7.
Organic electrode materials have shown potential for rechargeable batteries because they are environmentally friendly, earth-abundant sources, recyclable, high sustainable, designable, flexible, and lightweight. However, low electrical conductivity and dissolution in organic liquid electrolytes hinder their further development. Herein, MXene/organics heterostructures are designed to address the problems of organic electrodes via a scalable and simple electrostatic self-assembly strategy. Under the effect of the electrostatic interaction, organic cathode material, 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA), is tightly attached to MXene nanosheets. Owing to the high electronic conductivity and special two-dimensional (2D) structure of MXene nanosheets, the issues of PTCDA cathode are effectively relieved. When applied in lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs), the MXene@PTCDA heterostructure exhibits significantly enhanced rate capability and cycling performance than bare PTCDA. The heterostructures proposed here can be applied to other (K, Zn, Al, Mg, Ca, etc.) battery systems. In addition to energy storage and conversion, the heterostructures can be also extended to many fields such as catalysis, sensors, electronics, optics, membranes, semiconductors, biomedicines, etc.
有机电极材料已展现出在可充电电池方面的潜力,因为它们环保、储量丰富、可回收、可持续性高、可设计、灵活且重量轻。然而,低电导率以及在有机液体电解质中的溶解性阻碍了它们的进一步发展。在此,通过一种可扩展且简单的静电自组装策略设计了MXene/有机物异质结构,以解决有机电极的问题。在静电相互作用的影响下,有机正极材料3,4,9,10-苝四羧酸二酐(PTCDA)紧密附着在MXene纳米片上。由于MXene纳米片具有高电子电导率和特殊的二维(2D)结构,PTCDA正极的问题得到了有效缓解。当应用于锂离子电池(LIBs)和钠离子电池(SIBs)时,MXene@PTCDA异质结构比裸PTCDA展现出显著增强的倍率性能和循环性能。这里提出的异质结构可应用于其他(钾、锌、铝、镁、钙等)电池系统。除了能量存储和转换外,这些异质结构还可扩展到许多领域,如催化、传感器、电子、光学、膜、半导体、生物医学等。