Suppr超能文献

iELMNet:集成新型改进极限学习机和卷积神经网络模型用于交通标志检测

iELMNet: Integrating Novel Improved Extreme Learning Machine and Convolutional Neural Network Model for Traffic Sign Detection.

作者信息

Batool Aisha, Nisar Muhammad Wasif, Shah Jamal Hussain, Khan Muhammad Attique, El-Latif Ahmed A Abd

机构信息

Department of Computer Science, COMSATS University Islamabad, Wah Campus, Islamabad, Pakistan.

Department of Computer Science, HITEC University Taxila, Taxila, Pakistan.

出版信息

Big Data. 2023 Oct;11(5):323-338. doi: 10.1089/big.2021.0279. Epub 2022 Jan 6.

Abstract

Traffic sign detection (TSD) in real-time environment holds great importance for applications such as automated-driven vehicles. Large variety of traffic signs, different appearances, and spatial representations causes a huge intraclass variation. In this article, an extreme learning machine (ELM), convolutional neural network (CNN), and scale transformation (ST)-based model, called improved extreme learning machine network, are proposed to detect traffic signs in real-time environment. The proposed model has a custom DenseNet-based novel CNN architecture, improved version of region proposal networks called accurate anchor prediction model (A2PM), ST, and ELM module. CNN architecture makes use of handcrafted features such as scale-invariant feature transform and Gabor to improvise the edges of traffic signs. The A2PM minimizes the redundancy among extracted features to make the model efficient and ST enables the model to detect traffic signs of different sizes. ELM module enhances the efficiency by reshaping the features. The proposed model is tested on three publicly available data sets, challenging unreal and real environments for traffic sign recognition, Tsinghua-Tencent 100K, and German traffic sign detection benchmark and achieves average precisions of 93.31%, 95.22%, and 99.45%, respectively. These results prove that the proposed model is more efficient than state-of-the-art sign detection techniques.

摘要

实时环境中的交通标志检测(TSD)对于自动驾驶车辆等应用具有重要意义。种类繁多的交通标志、不同的外观和空间表示导致了巨大的类内差异。在本文中,提出了一种基于极限学习机(ELM)、卷积神经网络(CNN)和尺度变换(ST)的模型,即改进的极限学习机网络,用于在实时环境中检测交通标志。所提出的模型具有基于自定义DenseNet的新型CNN架构、称为精确锚点预测模型(A2PM)的区域提议网络的改进版本、ST和ELM模块。CNN架构利用尺度不变特征变换和Gabor等手工特征来改进交通标志的边缘。A2PM最小化提取特征之间的冗余,以使模型高效,ST使模型能够检测不同大小的交通标志。ELM模块通过重塑特征来提高效率。所提出的模型在三个公开可用的数据集上进行了测试,这些数据集对交通标志识别具有挑战性的虚拟和真实环境、清华-腾讯100K以及德国交通标志检测基准,分别实现了93.31%、95.22%和99.45%的平均精度。这些结果证明,所提出的模型比现有最先进的标志检测技术更有效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验