Suppr超能文献

基于极端学习机的卷积神经网络快速学习方法及其在车道检测中的应用。

Fast learning method for convolutional neural networks using extreme learning machine and its application to lane detection.

机构信息

School of Electronics Engineering, Kyungpook National University, 1370 Sankyuk-Dong, Puk-Gu, Taegu 702-701, Republic of Korea.

School of Electronics Engineering, Kyungpook National University, 1370 Sankyuk-Dong, Puk-Gu, Taegu 702-701, Republic of Korea.

出版信息

Neural Netw. 2017 Mar;87:109-121. doi: 10.1016/j.neunet.2016.12.002. Epub 2016 Dec 10.

Abstract

Deep learning has received significant attention recently as a promising solution to many problems in the area of artificial intelligence. Among several deep learning architectures, convolutional neural networks (CNNs) demonstrate superior performance when compared to other machine learning methods in the applications of object detection and recognition. We use a CNN for image enhancement and the detection of driving lanes on motorways. In general, the process of lane detection consists of edge extraction and line detection. A CNN can be used to enhance the input images before lane detection by excluding noise and obstacles that are irrelevant to the edge detection result. However, training conventional CNNs requires considerable computation and a big dataset. Therefore, we suggest a new learning algorithm for CNNs using an extreme learning machine (ELM). The ELM is a fast learning method used to calculate network weights between output and hidden layers in a single iteration and thus, can dramatically reduce learning time while producing accurate results with minimal training data. A conventional ELM can be applied to networks with a single hidden layer; as such, we propose a stacked ELM architecture in the CNN framework. Further, we modify the backpropagation algorithm to find the targets of hidden layers and effectively learn network weights while maintaining performance. Experimental results confirm that the proposed method is effective in reducing learning time and improving performance.

摘要

深度学习最近受到了广泛关注,它是人工智能领域许多问题的一种很有前途的解决方案。在几种深度学习架构中,与其他机器学习方法相比,卷积神经网络 (CNN) 在目标检测和识别的应用中表现出了卓越的性能。我们使用 CNN 进行图像增强和高速公路上车道的检测。一般来说,车道检测的过程包括边缘提取和线路检测。CNN 可以通过排除与边缘检测结果无关的噪声和障碍物来增强车道检测前的输入图像。然而,训练传统的 CNN 需要大量的计算和大型数据集。因此,我们提出了一种使用极限学习机 (ELM) 的新的 CNN 学习算法。ELM 是一种快速学习方法,用于在单个迭代中计算输出层和隐藏层之间的网络权重,因此可以大大减少学习时间,同时使用最小的训练数据产生准确的结果。传统的 ELM 可以应用于具有单个隐藏层的网络;因此,我们在 CNN 框架中提出了堆叠 ELM 架构。此外,我们修改了反向传播算法来找到隐藏层的目标,并在保持性能的同时有效地学习网络权重。实验结果证实,所提出的方法可以有效地减少学习时间和提高性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验